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Simple Public Key Infrastructure (SPKI) certificates can be used to repre-
sent trust and policy information in a manner that allows the authenticity
and the integrity of the information to be verified. These properties make
SPKI certificates useful when maintaining information and system secu-
rity. The reliability of a distributed system whose security management
is based on certificates may entirely depend on the availability of certifi-
cates. Clearly, such a system could benefit from having a distributed,
fault-tolerant certificate repository that supports flexible administration
of certificate data. The SPKI specification does not define one, however.

The Domain Name System (DNS) is a distributed database that is mainly
used to provide a naming service for the Internet. It can, however, be
adopted for other uses as well, by adding support for new data types to
name servers and resolvers.

This thesis presents a detailed description of how the DNS can be used as
an SPKI certificate repository. Existing knowledge is utilized when avail-
able, and new solutions are suggested as necessary. Among other things,
the naming practice of SPKI certificates is addressed, and a scheme that
offers support for two-way graph search algorithms is described. Such al-
gorithms have previously been found to be efficient when acquiring proof of
authorization from distributed databases in the form of certificate chains.
Evaluation of the suitability of the DNS as a certificate repository is also
given in this work.

Some of the certificate storage theory was refined and applied to practice
as the author implemented a DNS resolver with certificate support, and
used it to retrieve SPKI certificates from the DNS. The resolver was im-
plemented using JaCoB, a framework for cryptographic protocols. The
interface and the high-level structure of the implementation are described
in this thesis.

Keywords:  DNS, SPKI, JaCoB, resolver, certificate, framework
Language: English

ii



TEKNILLINEN KORKEAKOULU DIPLOMITYON TIIVISTELMA

Tekija: Tero Hasu

Ty6n nimi: SPKI-sertifikaattien tallennus ja haku kiyttden DNS:44
Piivamairi: 14. huhtikuuta 1999 Sivuja: 7+ 67 + 1
Osasto: Tietotekniikan osasto Professuuri: Tik-110

TyO6n valvoja: Professori Arto Karila
Tyon ohjaaja: TkL Pekka Nikander

Simple Public Key Infrastructure (SPKI) -sertifikaatteja voidaan kiyttaa
luottamusta ja turvapolitiikkaa koskevan tiedon esittdmiseen siten, etta
tiedon aitous ja eheys voidaan tarkistaa. Nama ominaisuudet tekevit
SPKI-sertifikaateista hyodyllisid ylldpidettiessé tietojarjestelmien turval-
lisuutta. Hajautetun jarjestelmén, jonka turvallisuuden hallinta perus-
tuu sertifikaatteihin, luotettavuus voi riippua téaysin sertifikaattien saata-
vuudesta. Hajautetusta ja vikasietoisesta sertifikaattien talletuspaikasta,
joka mahdollistaa sertifikaattiaineiston joustavan hallinnan, voisi selvisti
olla hyotya kyseisenlaisessa jarjestelméssa. SPKI ei sellaista kuitenkaan
médrittele.

Domain Name System (DNS) on hajautettu tietokanta, jota kiytetdin
péddasiassa nimipalvelun tarjoamiseen Internetissid. Se voidaan kuitenkin
ottaa muuhunkin kiyttoon lisidmalla nimipalvelimiin ja resolvereihin tuki
uusille tietotyypeille.

Tamaé diplomityo esittda yksityiskohtaisen kuvauksen siitd, miten DNS:44
voidaan kiyttda SPKI-sertifikaattien talletuspaikkana. Olemassaolevaa
tietoa on hyOodynnetty mahdollisuuksien mukaan, ja uusia ratkaisuja
on ehdotettu tarpeen vaatiessa. Muun muassa SPKI-sertifikaattien
nimedmiskdytantoon on otettu kantaa, ja kaksisuuntaisia graafihakualgo-
ritmeja tukeva kiytantd on kuvattu. Kyseisenlaisten algoritmien on aiem-
min todettu olevan tehokkaita valtuutuksen todistamiseen vaadittavien
sertifikaattiketjujen hankinnassa hajautetuista tietokannoista. Arviointia
DNS:n soveltuvuudesta sertifikaattien sdilytykseen on myos esitetty tassi
tyOssa.

Osa esitetysta teoriasta hioutui ja tuli sovellettua kdytant6on kirjoitta-
jan toteuttaessa sertifikaatteja tukevan DNS-resolverin, ja kiyttiessa sité
sertifikaattien hakemiseen DNS:std. Resolveri toteutettiin kiyttden Ja-
CoB:ia, kryptografisten protokollien tekemiseen tarkoitettua sovelluske-
hystd. Toteutuksen rajapinta ja korkean tason rakenne on kuvattu téassi
diplomityossa.

Avainsanat: DNS, SPKI, JaCoB, resolveri, sertifikaatti, sovelluskehys
Kieli: englanti
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Chapter 1

Introduction

The advances in network technology seen in recent years have made it possible
to access vast amounts of information even with small and simple devices,
regardless of location. To ensure the integrity and confidentiality of that
information, access to it needs to be controlled. Traditionally, access control
has required a way to somehow identify clients, as well as a trusted data
storage in the server end containing information about the clients. Such a
solution is not well suited for systems in which information is distributed
between numerous small and simple network entities.

The information about entities’ access rights can also be distributed if its
originator can later verify the integrity and origin of the information. This
is possible if the data is stored in certificates that are signed by the verifier.
Now, in order for an entity to gain access to a restricted resource, the correct
certificates need to be presented to the verifier, who has issued at least some
of the certificates and controls the access to the resource.

This brings up the question of how to best store the certificates. If every
entity were to store all the certificates it may ever need, it would add a lot
of management duties for all entities involved in the certificate system. All
entities might not even have enough storage space to permanently store all
the necessary certificates. Again, a lot of administration would be required
if all entities not having the storage space needed to make deals with other
entities to arrange for certificate storage elsewhere. Clearly, the system could
greatly benefit from a shared certificate repository accessible to everyone.

The work done in this thesis is a part of the ongoing project to create an archi-
tecture called Telecommunications Software Security Architecture (TeSSA).
The project aims for presenting a complete solution for securing communi-
cations in a non-trusted internet-like network environment, and for allowing
distributed management of authorization and access control information in
that solution. In order for the latter goal to be met, the architecture requires
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a distributed certificate repository, as well as a suitable component through
which the repository can be accessed.

One of the rules of TeSSA is that when looking for solutions, open standards
are considered first. Luckily, there already exists a commonly used stan-
dard that was created for a highly similar purpose, although probably with
different kind of data in mind. The Domain Name System defines a way
to arrange storage and on-demand retrieval of information from a public,
distributed repository of data. Considering the sheer size of the Internet, it
would be infeasible for every host connected to the net to have its own name-
to-IP-address translation table, for every host it ever needs to communicate
with. The DNS is a working and existing solution for the name translation
problem. It is therefore worth looking into its suitability for the certificate
acquisition problem as well.

The DNS was designed to be a generic database, capable of storing many
kinds of data. Therefore it can also be used for storing certificates. One
of the definite advantages of a certificate repository implemented within the
DNS would be that it could be adopted quickly on a world-wide scale, as
the DNS is already in use in the global Internet. While new data types are
readily supported by the DNS, the existing name servers and resolvers would
need to be updated to support records suitable for storing certificates. If the
necessary modifications were made, entities that would not want to take care
of certificate storage by themselves could arrange for a name server to take
care of the task. A DNS resolver would then be used as the interface for
requesting certificates on demand, in the same manner as it is used to make
name-to-address translations.

In this thesis, I cover the details of storing and retrieving certificates from a
DNS database, and present my evaluation of the suitability of such a database
for distributed certificate storage. I limit my examination to a particular type
of certificate, the SPKI certificate, but the results may still be more or less
directly applicable to other certificate types.

To test the theory presented I applied it to practice by implementing a DNS
resolver which supports certificate entries. In doing so I also provided the
TeSSA architecture with a component it was lacking by designing the resolver
in such a way that it can be added to the existing architecture as is. On top
of the resolver I implemented a search algorithm capable of retrieving entire
certificate chains from the DNS. The resolver implementation is described in
this thesis, and results based on experiences with it are also presented.



CHAPTER 1. INTRODUCTION

1.1 Organization of This Thesis

The rest of this thesis is organized as follows. Chapter 2 presents background
information by shortly discussing trust and digital certificates in general.
Chapters 3 and 4 continue by covering SPKI and the Domain Name System,
respectively. Chapter 5 describes how the DNS may be used as a repository
to store and retrieve SPKI certificates. Chapter 6 describes a prototype
of a DNS resolver implementation which supports retrieval of certificates.
Chapter 7 provides some analysis and evaluation of both the prototype and
the suitability of the DNS for SPKI certificate storage. Finally, in Chapter 8,
conclusions are presented.
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Expressing Trust

2.1 Trust Models

As Lehti and Nikander state in [18], trust is a belief that an entity behaves in
a certain way. The believer knows in what way it trusts the entity. Trust is
rarely absolute. Therefore, if Bob says “I trust Alice”, it isn’t really all that
informative. Such a statement really only tells the listener that Bob trusts
Alice in some matters, which is even likely, but what any of those matters
are, that remains to be established. Statements such as “I trust Alice to do
her part of the job well” or “I trust Alice to be kind to me when she is in a
good mood” are much more informative, even though there may still be other
ways in which Bob trusts Alice, which are not revealed by the statements.

It is important for trust to have attributes that make it clear what kind
of trust is in question. Sometimes such attributes may be obvious from the
context, however. Suppose your friend tells you that someone used a security
hole in his mail software to send sensitive information from his hard disk to
a Usenet newsgroup. If you then say that you trust your mail software, it
can be guessed from the context what kind of trust you mean.

The source of the trust, the target of the trust, and the kind of trust to-
gether form a trust relationship. If there is more than one target, the trust
relationship can be split into as many relationships as there are trustees. In
some cases both parties can be the same. For example, the statement “I trust
myself to get this thesis written before the deadline” describes one such an
autonomous trust relationship.

A trust model of a system is defined by the set of all trust relationships
in the system. “Trust no one”, an empty set of relationships, would be an
ideal trust model. However, in practice it is difficult and often impossible
to accomplish. In many cases there is no way to get the task done without
trusting any external entities. In Java 1.0, all code loaded from the open
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network is untrusted. Execution of such code is done inside a sandbox, a
very restricted environment in which direct access to critical resources should
be impossible. No matter how essential a task is, the applet simply cannot
perform it if the limited resources are not enough. This was found to be
too restrictive, and in Java 2 it is possible to choose which access rights are
granted to which programs.

Generally, when speaking about software systems, the number of trust re-
lationships in which the user trusts another entity should be minimized to
achieve better security for the user. This is an oversimplification, however,
because it does not account for different types of trust, or the degrees of
importance that the other party indeed is trustworthy. Categorizing and an-
alyzing trust, called trust modeling, can be done when a more accurate idea
of the security of a system is desired.

2.2 Digital Certificates

Certificates were originally viewed as being signed documents which bind
names to keys. However, since then, it has been thought best to expand
the definition, as it does not allow for the need to state that some entity is
authorized to get a certain service, for example. Therefore, in this thesis, the
definition of a certificate is expanded to mean a signed statement, in which
the signer’s belief about the properties of some entity is expressed. The
property can be a name and the entity can be a key, but that does not need
to be the case. The belief may not be justified, but that doesn’t make the
certificate invalid. Sometimes the signer may not even believe the statement,
but despite that he can express belief in it. Doing so may be useful if the
signer wants to delegate rights he expects to obtain in the future.

It is assumed that the cryptographic methods used are such that it is, in
practice, impossible to modify a digital certificate, without invalidating the
binding of the signature to the statement, and thus the whole certificate as
well. As this is the case, the signature is tightly bound to the statement, but
unfortunately not necessarily to the signer. However, if the signer is thought
to be the key used for signing, or the corresponding public key, the signer
also becomes tightly bound to the document.

The digital signature would typically consist of a number first computed
from the statement and then encrypted using the private key of the signer.
Some information about the signer is usually also included, as the effort to
identify the signer could otherwise require that the number be decrypted
using different public keys until a match is found. A good choice for the
information is the key that forms a key pair together with the key used to
sign, as it then needn’t first be acquired before the signature can be checked.
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Certificates are often categorized into different types according to the kind
of statement in the certificate. If it says that an entity is allowed to do
something, then the certificate is called an authorization certificate. If it
specifies the name of an entity in some name space, then the certificate is
often called a name certificate, or an identity certificate. Here, the term
name certificate is preferred, for the reason that a name does not necessarily
imply identity. Many different entities could be given the same name, even
in the same name space, unless measures are takes to avoid collisions.

It should be noted that certificates are closely related to trust relationships.
In fact, they are representations of trust relationships. To find a good trust
model for a system, one may want to consider using sandboxes to minimize
the amount of trust needed, and the harm that malicious code can cause,
and digital certificates to express the trust that is required. This scheme
immediately implies one trust relationship, namely the need for the user to
trust the sandbox to work according to specification. If the user trusts the
sandbox, she can issue a certificate that expresses the trust, and proves that
the sandbox is authorized to use critical resources in the system it is running
on.

When considering which entities to assign certificates to, it may be useful
if the security policies of those entities are known. A security policy is the
set of rules and practices that regulate how sensitive information and other
resources are managed. Definitions of such policies, especially formal ones,
may aid in the decision of whether or not to trust an entity. Languages for
defining policy rules exist. One example of these is the Security Policy Spec-
ification Language (SPSL) [6], which is meant for specifying communication
security policies.

2.3 Storage of Certificates

One certificate may be needed by multiple entities. If each entity stored their
own copy of the certificate, it would perhaps speed up the process of proving
the existence of a trust relationship. However, this kind of duplication of
data would make it hard to avoid inconsistencies between the data possessed
by different entities. Also, making an update to a piece of information would
require that each concerned entity be notified. This would probably lead to
the generation of unnecessary traffic, as every one of the entities might not
need the information between updates. If all entities instead used a shared
repository, there would be very little or no unnecessary traffic. Entities could
acquire updated information only if and when they need it, an arrangement
sometimes called “lazy evaluation”.

A repository shared by a large number of entities is likely to be huge. Cen-
tralized solutions would probably prove inadequate, at least because of con-

6
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gestion caused by all entities needing a certificate accessing the same network
node. Distributed databases do not have this problem; they scale well, be-
cause more servers can be added if the amount of data stored in the database
gets too large for the existing servers to handle. Distributedness also in-
creases fault-tolerance, as failure in one network node does not make the
whole database inaccessible. This reduces the chance of denial of service
situations.

2.4 Public Key Infrastructures

A public key infrastructure (PKI) is a system in which public keys and in-
formation pertaining to the keys are represented in a certain, defined way.
Digital certificates can be used to bind the information to the keys, regardless
of what kind of information is in question. A PKI also defines the process of
checking whether a given certificate is valid. That is necessary for certificate
revocation and expiration to be possible.

bind ———» encode
key

Figure 2.1: Certification.

certificate valid |

check<

certificate not valid |

external information |

Figure 2.2: Validation.

The kinds of procedures used to bind information to a key and to encode the
result, and to verify the validity of a claim given in the encoded form are the
defining characteristics of any a PKI. In [5], these two operations are called
certification and validation.

A PKI and a suitable certificate repository can together provide a foundation
for managing trust and policy information in the form of digital certificates,
even for a large distributed system with numerous interacting entities. A PKI
defining a common representation for information offers support for making
interoperable applications. The same is true for a shared repository that is
accessible to all entities in the distributed system.
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SPKI

Public key technology is widely employed for security purposes. To ensure
the interoperability of applications which require the use of public key cer-
tificates, different parties have to agree on common certificate formats and
semantics. Detailed and complete specifications of such things would pro-
mote the development of interoperable applications.

The Internet Engineering Task Force (IETF) SPKI Working Group is at-
tempting to develop an Internet standard which defines an infrastructure for
managing public keys. The standard is to be called Simple Public Key Infras-
tructure (SPKI), and is to define a public key certificate format, associated
signature and other formats, and key acquisition protocols. The overview
of SPKI presented in this chapter is based on the latest draft documents
released by the working group [14, 13].

SPKI, being a PKI, defines certification and validation mechanisms. The
structures and encodings used when creating a certificate are covered in Sec-
tion 3.2, and validation issues are touched in Section 3.3.

As the name implies, unnecessary complexity was avoided in the design of
SPKI. That makes it faster to get a grasp of the infrastructure, and to make
implementations based on it. Simplicity of the implementations should allow
them to be used even in constrained environments, such as smart cards.

Lack of complexity does not imply that SPKI could only be used for a very
limited number of different purposes. SPKI certificates are expressive, and
can be used to describe just about any a trust relationship. Also, any entity
that has a private key can generate certificates; the right to do so is not re-
served just to some high-and-mighty certification authorities (CAs). Indeed,
support for various different trust models is important for an infrastructure
that is intended to become an Internet-wide standard.

One of the fundamental ideas behind SPKI is that there is no need to have a
unique name other than a key used in public key cryptography. A public key
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can act as an identifier for the set of all entities which can prove possession
of the counterpart of the public key. If there is only one such entity, then
it is uniquely identified by the public key. If the key generation process is
flawless and there are enough many different possible keys, it should be safe
to assume that no two keys generated will ever be the same. The creator
of a key pair just needs to keep the private key as a secret and no one else
can impersonate as her, assuming that it is infeasible for anyone to acquire
the key through cryptanalysis. An entity possessing multiple private keys
effectively also has multiple identities, and the freedom to choose as whom
to appear when interacting with other entities.

Although public keys are ultimately used as the identifiers in SPKI when
verifying the existence of a trust relationship, sometimes indirection may be
desirable. One such reason could be the desire to have shorter identifiers. A
hash of a public key can be used as an identifier instead of the key itself. The
hash function should be such that collisions do not occur with any significant
probability and that it is computationally infeasible to find any two distinct
inputs which hash to the same output. That should guarantee that a hash
of a public key is just as unique an identifier as the public key itself.

Names, in turn, can be used to achieve delayed binding or increased conve-
nience. One can express belief that the entities with a certain name have a
certain property, even if no entity yet has the name. Also, people tend to find
it easier to remember names rather than long, seemingly random numbers.
It should be noted that in SPKI, there are no universal names which would
refer to the same keys in every name space; hence it is necessary to know to
which key a name is relative to. Neither does SPKI attempt to enforce that
there be no more than one key per name. Names can therefore be thought
to refer to groups of entities.

One of the main requirements in the design of SPKI was to create an in-
frastructure which would offer support for making authorization decisions.
SPKI certificates allow not only names, but also authorizations to be bound
to keys or other objects. Thus policy rules can be expressed and permissions
can be granted in the form of digital certificates. Authorization decisions
can be supported by or be completely based on a set of SPKI certificates.
A mechanism that can be used in deriving such decisions is described in
Section 3.3.

The SPKI specification doesn’t provide a list of authorizations that can be
included in an SPKI certificate. The decision of which authorizations to
support in an application is left to the developer, which adds to the simplicity
and generality of SPKI. Usually it is the entity that originated a certificate
that must make decisions based on it; it should be safe to assume that the
creator of a certificate can also interpret the authorizations encoded into it.



CHAPTER 3. SPKI

3.1 Certificate Types

An SPKI certificate is a tool that can be used to bind together pieces of
information. The SPKI specification categorizes such pieces of information
to three classes: key, name and authorization. Anything that can be used as
a unique identifier fits into the key class. Authorization definitions belong to
the authorization class. Everything else must be categorized as a member of
the name class.

One SPKI certificate can be used to tie together two pieces of information

which belong to different classes. Therefore the are = 3 general kinds

3
2
of certificates. I use the following terms to refer to SPKI certificates when 1
want to also express the category they belong to:

authorization certificate Binds together a key and an authorization.
name certificate Binds together a key and a name.

attribute certificate Binds together a name and an authorization.

By considering the ordering of the items in a certificate one gets the following

2! ( g ) = 6 different mappings:

1. key = authorization
2. key = name

3. name = authorization
4. name # key

5. authorization - key

6. authorization # name

The mappings 1. and 2. have been marked as valid because a key can be
assigned any names or authorizations; therefore possession of a key and an
authorization certificate which has the key as the subject implies authority,
i.e, fey—authorzation key (\[ P ). Similarly, possession of a key and a certifi-
cate which binds the key to some name implies possession of the name, i.e.
key—name key ~The mappings 4. and 5. have been marked as invalid; even if

name
an entity proves possession of a name and presents a certificate which ties

!Modus Ponens. If (one possesses a certificate stating) key implies authorization and
(one possesses) key, then (one possesses proof of) authorization.

10
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the name to some key, there is still no way to be sure that the identifier in
the certificate belongs to the entity, as more than one entity can have the
same name. The same applies for authorizations. In SPKI, having a cer-
tain name implies belonging the a group of entities having the name. Any
defined authorization can be assigned to any group; thus the mapping 3. is
valid. However, the same authority can be possessed by some other entity
that does not belong to the group, and the mapping 6. must be considered
invalid.

Based on the above results it can be noticed that each category of SPKI
certificates has only one possible direction for the mapping, and a more
accurate description for the categories can be given:

authorization certificate Binds an authorization to a key.
name certificate Binds a name to a key.

attribute certificate Binds an authorization to a name.

Given the possible mappings, there are two different ways an entity could
prove authorization using a mixture of SPKI certificate types. These two
ways are given below; they show that each category of certificates has its
uses in making access control decisions.

key—authorization key
L. authorization . (MP)

. . k k
name—authorization ~SY=RAME FeY

2. sme— (M.P.)

authorization

3.2 Certificate Format

In SPKI, a clear distinction is made between name certificates and the other
two kinds of SPKI certificates. The structure of name certificates is dif-
ferent from that of authorization and attribute certificates, and is shortly
described in Section 3.2.2. Authorization certificate structure is presented in
Section 3.2.1 to the extent that is relevant to this thesis; attribute certificates
share the same structure. A more complete specification of both certificate
structures can be found in [13].

SPKI certificates are represented using S-expressions. An S-expression is
a data structure which can be used to represent complex data. Its spec-
ification was first developed for Simple Distributed Security Infrastructure
(SDSI). The development was influenced by the LISP programming language,
in which a particular form of S-expressions is used.
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In short, an S-expression is either a string or a finite list of elements. The
strings in the expressions consist of a concatenation of zero or more octet
strings. The lists have zero or more elements, which can be either strings or
lists.

While the S-expressions are always structurally the same, their encodings
may differ depending on their use. A compact format is efficient when send-
ing data over a network, whereas user interaction requires a readable repre-
sentation; the two attributes rarely coincide. Typically, no single encoding
can be found which is most efficient for every imaginable situation. For
this reason, the S-expression specification defines several different formats
for both strings and lists. For details on them, refer to [30].

In order for a checksum or message digest calculation to always give the
same result for the same expression, regardless of differences in the encoding,
the expressions need to be translated into some common format. The S-
expression specification defines such a format, and calls it the “canonical”
format. It is uniquely defined for each S-expression, and intended to be easy
to parse [30].

In the canonical format strings are written as-is, except that they are pre-
fixed with a string representation of a decimal number, followed by a colon.
The number states the number of octets in the string, excluding the prefix.
Elements in a list are written back to back, with no separators. All lists
are surrounded with parentheses to make it possible to tell which element
belongs to which list.

(3:3sh(4:host10:tcm.hut.fi) (4:userd:root) (9:max-times1:6))

The above expression is an example of the canonical format. For purposes
of readability, I prefer to write it as:

(ssh (host tcm.hut.fi) (user root) (max-times #F6#))

Another reason for using the latter format is that the canonical encoding of
keys or hashes is extremely likely to contain some unprintable characters.

Both SDSI and SPKI use S-expressions to represent certificates. Compared
to the description above, SPKI imposes a further requirement to the S-ex-
pression structure. Any lists in an expression must always have a string as
the first element. The string often identifies the type of data contained in
the list. In the above example ssh could indicate the kind of permission
described by the expression, in this case perhaps being the permission to
create an SSH connection to the given host as the given user. The meaning
is for the issuer of the statement to decide, however.

S-expressions may contain octets which are not printable in the character set
used; sometimes some of the octets may not even belong to the character
set. For example, most SPKI certificates encoded using canonical S-expres-
sions could not be expressed using 7-bit ASCII, which can be a problem
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if certificates are sent by e-mail or managed by editing text files. For this
reason the SPKI specification allows the use of the base64 encoding, as de-
fined in [15]. The base64-encoded result is often surrounded with braces.
For example, (ssh (host camphor.tcm.hut.fi) (user root)), after be-
ing converted to the canonical form, encodes into:

{KDM6c3NoKDQ6aG9zdDE40mNhbXBob3TIudGNtLmh1dC5maSkoNDp1c2VyNDpyb2
90KSk=}

It is, however, more efficient if the canonical format can be directly used for
both storage and transmission, as that format anyway needs to be used in
the hash calculations.

The following two sections give the high-level syntax for SPKI certificates,
but do not mention signatures. All SPKI certificates have a signature, which
usually follows right after one of the cert structures described below. The
signature contains a hash of the cert element being signed, the signer’s public
key or its hash, and the hash value encrypted using the signer’s private key.

3.2.1 Authorization Certificates

An SPKI authorization certificate consists of several fields, as can be seen
from the following format specification.

"(" "cert" <version>? <cert-display>? <issuer> <issuer-loc>?
<subject> <subject-loc>? <deleg>? <tag> <valid>? <comment>? ")"

Five of the fields are relevant when making authorization decisions. These
five are:

<issuer> Issuer The entity that issued the certificate, expressed as a public
key or its hash.

<subject> Subject The entity that the certificate was issued to, commonly
expressed as a public key or its hash. May also be a name, or a chain
of names in which every name that follows another is relative to the
other name. If the keyholder indicating the name space is not explicitly
given, it is taken to be the issuer. Other options for a subject include
a whole object (e.g. a Java class file), an object hash, or a threshold of
subjects. By using a threshold subject the issuer can specify any num-
ber of subjects and insist that at least a certain number of them must
cooperate in order to exercise the authorization given in the certificate.

<deleg> Delegation The optional delegation field, if present, signifies that
the subject is permitted to delegate the permissions specified in the
certificate to others, fully or partially.
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<tag> Authorization The authority field specifies the permissions granted
by the certificate. SPKI does not give a set of all the allowed permis-
sions, so application developers are free to invent their own. However,
the grammar given in SPKI must still be followed when deciding on
expressions for new permissions.

<valid> Validity The optional validity field specifies the period of time
during which the subject possesses the permissions described in the
authority field. Either the lower bound, or the upper bound, or both
can be given, up to the accuracy of seconds. The validity field may also
contain, in addition to the time period or alone, a set of online tests,
which can be used to set further limitations to when the certificate is
valid. If the validity field is not present at all, then the certificate is
always valid.

Other fields, all of which optional, include:

<version> Version number of the certificate format. Certificates containing
an unrecognized version number are to be ignored.

<cert-display> Gives a display hint for the certificate. Means to aid user
interface software in deciding how to display the certificate. Implemen-
tors are free to define their own hints, none are specified in SPKI.

<issuer-loc> Can be used to specify URIs that provide information regard-
ing the issuer.

<subject-loc> Can be used to specify URIs that provide information re-
garding the subject.

<comment> Allows comments to be included in the certificate.

3.2.2 Name Certificates

As SPKI name certificates are used to bind names to keys, they naturally
contain a name field and a subject field. An identifier for the name space is
also included.

The format of name certificates is the following:

(" "cert" <version>? <cert-display>? "(" "issuer" "(" '"name"
<principal> <byte-string> ")" ")" <subject> <valid>? <comment>?

ll)ll

Only the three compulsory fields and the validity field are relevant when
making access control decisions. They are described below. The rest of the
fields are the same as for authorization certificates.
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<principal> Issuer The entity that issued the certificate, expressed as a
public key or its hash.

<byte-string> Name A name for the subject in the issuer’s name space.
The name may be any octet string.

<subject> Subject This field is the same as for authorization certificates.

<valid> Validity This field is the same as for authorization certificates.

3.2.3 Tuples

When analyzing certificates in order to make a decision based on them, it is
simpler to only concentrate on that information which is relevant to the par-
ticular decision. As mentioned above, only certain fields of SPKI certificates
are needed for authorization decisions. The SPKI specification defines two
structures called 5-tuple and 4-tuple, which only contain those fields.

SPKI authorization and attribute certificates can be mapped to 5-tuples,
for which I will use the notation (i, s,d, a,v). The elements correspond to
the Issuer, Subject, Delegation, Authorization, and Validity fields of the
certificates, respectively. SPKI name certificates in turn can be mapped to
4-tuples which I denote as (i, s,n,v), where the elements correspond to the
Issuer, Subject, Name, and Validity fields. If non-SPKI certificates can be
translated to tuples they can also be included in an analysis, and processed
in the same manner as SPKI certificates.

After the signature of a certificate has been checked, the certificate no longer
needs to be kept in the canonical S-expression format, and can thus be trans-
lated into another form. If the memory used can be trusted to protect the
integrity of the data, the signature need not be preserved. Tuples do not
contain a signature; therefore a conversion from certificates to tuples is a
lossy operation which cannot be reversed. The original certificates must not
be thrown away if information contained in them is still needed after the
processing of the tuples.

As 5-tuples and 4-tuples are usually not kept in mass storage or given to
entities other than the one that created them, there is no format defined for
them. Any representation which allows efficient processing in memory should
be suitable.

3.3 Use of Certificates

As mentioned before, the main reason for the existence of SPKI is to offer
support for making authorization decisions. Other uses, such as creating a
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database containing information about attributes and group memberships
of different entities, could be devised. However, for simplicity I'll restrict
my examination of the uses of SPKI certificates to the use of authorization
certificates in access control situations. As described in Section 3.1, authority
can be expressed with a name certificate and an attribute certificate instead
of an authorization certificate, but I do not cover that option as it is a trivial
matter to replace a name with a key if the correct name certificate is available.

By using the different kinds of SPKI certificates together, just about any a
statement expressing trust can be made. Typically, it is not the making of
a statement that is difficult, but the decision of whether to make it or not.
When someone asks for access to a resource, the entity controlling access
should consider the information available about the requester and the risks
involved. The bigger the potential damage caused by misuse, the more likely
should the answer “no” be. In some cases it is simple to make a decision.
Suppose there is no possibility of misuse, and a contract that states that
those and only those who have paid for a service are to be granted access to
it. Then all the information required for a decision is a list of entities who
have paid.

One of the major benefits of using SPKI certificates is that one can often do
away with using access control lists (ACLs). If service provider p decides to
grant entity e the right to use a service, it can issue a certificate stating that
¢ has the right. p may not even need to store the certificate anywhere, if and
when the certificate has been given to e. It can be left as the responsibility
of clients to store the certificates. p need not memorize who it has decided
to trust, about which matters, nor for how long; in other words p need not
maintain an ACL. Thus p could possibly be very lightweight and reside on a
device with very little storage space, even if it has thousands of clients.

Most clients do not access thousands of different servers, so it is usually not
a great burden for them to store the certificates they need to access all the
servers whose services they do use. Those clients that need to have access to
a large number of certificates can be kept light by using an external database.
The same database could possibly serve more than one client, but to scale
well the database would need to be distributed.

3.3.1 Certificate Chains

In order to keep the tasks of different entities simple, it is necessary for
entities to delegate responsibilities to others. p might want to assign another
server the responsibility of issuing permissions to clients. The other server
in turn may need to further delegate those permissions to servers which have
more information about would-be clients.
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To empower entity d; to act on its behalf, p must issue a delegation certificate
to 01; the certificate should contain at least those rights which ¢; is to pass
on to others. Suppose d; passes some permission to entity €, and ¢ has not
received the same permission directly from p. Then one certificate is not
enough to prove that € has the permission. A certificate chain is required.

A chain of certificates consists of a set of certificates C' = {cy, o, . .., ¢, } such
that Ve; = (i, 55, d;,a4,v;), 2 < j <n, s;_1 = i; and Vei, = (ig, Sk, di, ag, Vk),
1 <k <n-—1,d; = true. (Note that here I am using 5-tuples to represent
entire certificates, and that each certificate must be signed by the entity
marked into the issuer field.) C' can be used to prove that s, has been given
authorization a; NasN...Na, by i; for the validity period v Nvy N ... Nwv,.
In addition to C, there could be other, different chains that are proof of the
same or overlapping rights for the same or overlapping validity period.

3.3.2 Preserving Privacy

Given the expressiveness of SPKI certificates, a certificate could contain,
alone or in combination with others, some information which is considered
sensitive by the issuer or the subject of the chain, or by one of the delegators.
In such a case measures need to be taken to keep the information from falling
into the hands of those who do not need to know it when creating the chain
or when proving the right of the subject.

Storage Considerations

If all of the parties involved in the chain can be trusted to keep the sensi-
tive information confidential, it should be enough to use a storage method
other than a public, global repository for the certificates in the chain, and to
encrypt all communication between the parties when certificates are being
transmitted. Such trust is a lot to expect, however.

Certificate Reduction Certificates

Suppose a delegator, §;, wants to remain anonymous. It possesses a certificate
¢ = (0,1, 09, true,a,v), and wants to delegate the right @ C a to §41. 91
already knows about ¢;, but §; would like to remain anonymous to ;1. What
it can do is to issue the certificate ¢; 11 = (0;, 141, d, a,v) as it would do in
any case, but instead of sending it to d;;; send both ¢; and ¢;;1 to §;_; and
ask 0;_1 to issue a Certificate Reduction Certificate (CRC). §;_; should then
create the certificate ¢, = (0,1, d,41,d, a,v) which ¢, can have delivered to
0;41 without revealing its identity.
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Encryption

Use of encryption is a common way to maintain confidentiality. Certificates
can be wholly or partially encrypted (along with some random data) using
some key which is only known to parties that need to know the information
that is encrypted.

Suppose an entity p creates the certificate ¢ = (p,~,d, a,v) and encrypts it
with the key k. p then sends the result ex(c) to 7, telling + in what kind of
access control situations it should present ex(c) to p. It is not essential for
to know exactly what is written in ¢ to be able to prove its access rights to p,
who can verify the validity of the proof by using the key k. No other entity
can gain any information from e (c) just by examining it (assuming they do
not possess the key k), which is appropriate if ¢ does not allow delegation and
thus only concerns p and . If delegation is allowed and v wants to delegate
its rights to some other entity €, v can use ex(c) to prove its delegation right
to p, and ask p to issue the appropriate certificate c.. v can then give ¢, —
which could be thought to be a CRC - to e.

Delegation of rights stated in partially encrypted certificates can be more
straightforward. If only some of the fields of a certificate, for example the
authority and validity fields, are encrypted, it is still possible for the subject
of the certificate to create a certificate for delegating the rights. The fields can
be copied to a new certificate even if the entity copying them does not know
their meaning. Only the originator of a certificate chain needs to be able to
understand what rights are proven by the chain; it may even have decided
by itself how to describe those rights using S-expressions. Such descriptions
could possibly be incomprehensible to others even without being encrypted.
It is also enough for the verifier of a chain to be able to check what the
intersection of the chain’s certificates’ validity dates is.

3.3.3 Verifying Authority

In a typical access control situation there is an entity p that provides a
service and will let any entity to which it has, directly or indirectly, issued
authorization a use the service. To prove the authorization the relevant
certificates need to be acquired. The source could be p itself, the prover, or
some third party. I will not try to cover all possibilities. Instead I assume that
p does not keep track of the certificates it has issued and that the required
certificates are always sent along with the requests, in such an order which
allows easy verification.

In some cases, for example when some of p’s clients are running on smart
cards with no storage space for certificates, the above requirement may be too
strict. Even if the clients can acquire the certificates from a database main-
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tained by some other entity, the clients would still need to contain enough
logic to acquire the correct certificates from the database, which might be
counterproductive. In such cases it would be better for the service provider
to acquire the required certificates, which can be seen to be a part of the
service.

Il cover the access control situation through an example. If an entity € wants
to use the service provided by p, it will sign a request with its private key
and send it to p. Upon receipt p checks the signature in the request. It then
proceeds to check the certificates sent as proof, perhaps first individually,
but then by checking if they form a valid chain.

Validity of a certificate chain is checked using a method called tuple reduc-
tion. Below is an example of a reduction of a certificate chain containing
three certificates, but the process is essentially the same regardless of the
length. If the input is a valid chain of certificates (as defined in 3.3.1), the
process of reduction will produce one certificate; otherwise the process will
fail.

(p, 01, true, ar,v1) + (1, 02, true, as, v2) + (02, €, d, as, vs)
= (p,e,d,ay Nag Naz, vy N vy Nv3) (3.1)

If the validity period encompasses the moment when the chain is checked and
authorization a; Nas Nag is enough to access the service, i.e. a;NasNaz 2 a,
the chain has been verified to prove that € has access rights to the service.

Servers may have local policy rules, however. Especially in the case of dele-
gated permissions, the server may not accept all valid certificate chains. For
example, the server could have a list of entities which it does not trust as an
issuer of certificates, and if a certificate contains such an issuer it will not be
accepted, and the chain is broken. The verifier will usually check the indi-
vidual certificates before performing tuple reduction, as there is little point
in trying to verify an incomplete chain. Online checks can in some cases be
so slow, however, that it is best to only perform them once the chain has
otherwise been found to be valid.

Once the chain has been found to prove the access rights of €, what remains is
to verify that the entity with whom p is negotiating with really is e. Although
the request was signed by e, there still is the possibility of a replay attack.
Authentication is usually done through some kind of a challenge-response
protocol, in which the challenger sends random data to the other party. The
recipient uses its private key to encrypt the data, and then sends the data
back to the challenger who can decrypt it using the client’s public key and
verify that the data is the same that was originally sent to the client. The
process of authentication effectively closes the certificate chain into a loop
which proves that the entity requesting access to a resource can be allowed
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to access it. The loop for the example chain of certificates is depicted in
Figure 3.1.

delegator (81,3, true, as,v2) delegator
) (o
(p, 81, true, a1, v1) (02,¢, d, a3, vs)

service . .
€ proves possession of private key client

provider

P €

Figure 3.1: Client authorization certificate loop.

Often the client will also want to authenticate the service provider and verify
that it is trusted to provide the service the client wants. This is especially
important if the service provider needs some of the client’s resources to per-
form the service. Again, a loop of certificates is needed as proof. It is shown
in Figure 3.2. The delegating entities v; and 7, shown in the figure are some
entities that e trusts as introducers. They could even be owned by ¢ and have
been assigned the task of collecting data, based on which they could make
decisions regarding the trustworthiness of various service providers.

delegator (V1,2 true, as, v2) delegator

VZ Vl

(g,y1,true, a3, vi)

service . £ ori k .
p proves possession of private key client

provider

p

(r

Figure 3.2: Service provider authorization certificate loop.
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The Domain Name System

In early networks, low-level hardware addresses were used to identify ma-
chines. Internetworking introduced the concept of mapping universal ad-
dresses into low-level addresses. Still, for humans the universal addresses —
being just seemingly arbitrary numbers — were impractical and difficult to
remember. To alleviate these problems, a new naming concept based on host
names was adopted. Host names are usually meaningful and pronounceable
text strings. Their purpose is to act as high level, unique identifiers for hosts,
in addition to Internet Protocol (IP) addresses. Still, the host names, which
could be thought of as mnemonics for the IP addresses, could not be used
within the IP packets as the actual addressing information. Therefore, a way
to translate the host names to the IP addresses had to be arranged.

The mappings from host names to IP addresses used to be maintained in a
single file on a single host. Other hosts could keep their mapping information
up to date by fetching the file with FTP. Network administrators would
typically e-mail the maintainer of the file about any changes in their local
networks, to get the changes made visible to the rest of the Internet. Along
with the growth of the net the bandwidth consumed by such administrative
tasks grew, and it became apparent that a new solution was required.

The Domain Name System (DNS) is that solution; it is now the member
of the TCP/IP protocol suite that is responsible for name resolution. An
overview of the DNS is given here, and a more detailed description can be
found in [19, 21, 22].

While the major goal of the DNS was to handle the host name to IP address
mappings, general usefulness was also sought for in the design. Since an

Internet-wide system takes a lot of work to set up, it is reasonable to expect
significant benefits in return.

As it stands, the DNS is usable for more than one purpose. In fact, it is a
distributed database that can be used to manage any kind of data, as long as
the data is not too sensitive to be stored in a database accessible by anyone.
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The records in the database are indexed by the domain names associated
with them, which are typically host names, but can also be other kind of
entities’ names.

4.1 Domain Name Space

The set of all different values by which data is indexed into a DNS database
forms a domain name space. While the values could be chosen in almost
any way, to achieve a distributed database they need to be chosen so that
they indicate a position in a hierarchical structure. A domain name space is
therefore always structured like a tree. As the tree acts as an index for the
database, it is essential that it be kept in a consistent state. Otherwise some
of the branches could be “cut oft” from the tree, and queries regarding any
nodes in those branches would fail. In this thesis, the term node is used to
refer to both leaf nodes and internal nodes.

In the DNS, a domain can be thought to be a subtree of a tree that represents
a domain name space. Figure 4.1 shows a a small name space. The domain
hut.fi has been circled.

Figure 4.1: The domain hut.fi.

The name of a domain consists of a concatenation of the labels of each node
on the path from the root of the subtree to the root of the whole tree. In
Figure 4.1, the domain name hut.fi is acquired by following the emphasized
path towards the root. The maximum length of a label is 63 bytes. The
empty string is reserved for the root of the tree, and nodes that have the same
parent may not have the same label. The DNS standard itself allows labels
to contain any octets. Unfortunately, a lot of the flexibility that this freedom
would otherwise offer is done away with the fact that all comparisons in the
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DNS are case insensitive. Because of this, case cannot always be preserved,
even though the standard recommends that it be done whenever possible.
The labels used thus cannot be just any binary objects less than 64 octets
in size, not even if encoded with the commonly used base64 encoding. Some
systems that use the DNS have their own rules for the kind of domain names
that are allowed. For instance, the rules defined in [7] should be satisfied
when naming a mail domain.

The DNS specification also defines how domain names should be represented
as text. Dots are used as separators for the labels in the text representation.
Some characters, such as dots and non-printable characters of the labels need
to be escaped; i.e. they need to be represented using more than one character.

A zone is a group of domain names and data that are governed by the same
authority. Suppose a name server (see Section 4.4) is authoritative for the
entire domain hut.fi, except for the subdomain tcm.hut.fi, which is man-
aged by another name server. The whole domain hut.fi then is not ruled by
one and the same authority, and is thus divided into at least two zones. The
authority managing tcm.hut.fi could have further delegated the authority
for possible subordinate domains of tcm.hut.fi. To name a zone, the name
of the subtree within the zone that is the closest one to the root (of the whole
tree) is used.

4.2 Resource Records

A domain name space and the information associated with the names to-
gether form a DNS database. The information is composed of so-called re-
source records (RRs). As different kinds of information usually require a
different storage format, each kind has its own resource record type. Various
different types have been defined in [22], and more can be defined as the need
arises.

The RRs have the same high-level structure, regardless of the type. The
structure is shown in Figure 4.2. Among other things the record contains the
name of the node to which the record pertains, and the time-to-live (TTL)
value of the record. The latter value indicates the number of seconds for
which the RR may be cached.

The last of the fields, RDATA, has a type-dependent internal structure. The
type of an RR can be determined by looking at the type value contained
within it. The RDATA field also consists of one or more fields. As fields with
the same semantics may have different sets of possible values in different
environments, it may be desirable for the format of RDATA fields of the
same type to vary depending on the kind of protocol family or instance of a
protocol that the RDATA information concerns. For example, an IP address
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RDATA

Figure 4.2: Resource record structure.

is 32 bits in size; longer addresses could be used by some other protocol.
For the reason given above, RRs also have a class value, which specifies the
protocol suite that the information in RDATA applies to. The format of
RDATA also depends on this value. Each type and class are assigned their
own unique numbers. The class value 1, which has the mnemonic IN for
Internet, is currently by far the most commonly used one. Thus, for brevity,
I often neglect to mention the RR class altogether when discussing record
types and other selection criteria.

A query operation is an attempt to retrieve a set of all the RRs in a certain
database which have the same domain name, type, and class. Such a set
is sometimes referred to as an RRset. Currently, requests for RRsets of the
type A are most common, as an A RR is needed when one wishes to know the
IP address corresponding to a domain name. The RDATA fields of A RRs
have the simple structure shown in Figure 4.3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ADDRESS

Figure 4.3: A RDATA structure.

Another important type of RR is CNAME. Records of that type indicate that
the domain name to which the record pertains is actually only an alias, and
that the primary name of the alias owner is contained within the RDATA
field of the RR. The length of the field varies depending on the length of the
name. NS RRs have the same structure, but the domain name specifies a
host which is authoritative for the zone starting at the domain of the RR.
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Within DNS messages, RRs are represented in the binary form described
in this chapter. When stored in a name server’s configuration file, the RRs
are typically represented in a printable and readable form. The format used
when caching RRs completely depends on the implementation.

4.3 DNS Messages

Resource records are carried from a name server to another within DNS mes-
sages. These messages can be transmitted either as User Datagram Protocol
(UDP) [28] datagrams or in a byte stream formed with Transmission Control
Protocol (TCP) [29]. UDP packets are preferable, as they offer lower over-
head and better performance. However, the use of UDP brings limitations
to the size of messages that can be sent. The DNS specification defines the
maximum size of messages that have a UDP datagram as the transport to
be 512 bytes (excluding the UDP header). Queries are typically short and
will fit in 512 bytes, but replies containing many entries may well exceed the
limit. Even a single RR containing an SPKI certificate, for instance, could
easily be too large. In such a case the response should be truncated and the
truncation flag in the message header (see below) should be set in order to
conform to the DNS standard. When a resolver finds that the flag has been
set it should resubmit the query using TCP. An intelligent resolver may first
check to see if the response contains the entire answer section; if so, there is
no need to use TCP.

The UDP standard itself does not define such a severe 512 byte limitation.
Most of the current Internet can handle packets of up to 1500 bytes in size
without fragmentation [8, 23|, and it can be expected that the average MTU
(Maximum Transfer Unit) of the network hardware in use will continue to
grow. Even now, some networks are only limited by the maximum size that
can be specified in an [P datagram header, which is 65535 bytes. In practice,
packets with significantly larger DNS payload than 512 bytes could be trans-
mitted between many network nodes if the DNS software accepted larger
UDP packets. A backward compatible modification to the DNS protocol
which would allow larger responses has been suggested [8].

The format of DNS messages is the same for both queries and replies. All
messages have a header of the same size and structure. The structure is
shown in Figure 4.4.

Only brief descriptions of the fields in the header are given here. For more
information, refer to [22].

ID A 16-bit identifier used by the client to match replies to outstanding
queries, or by the server to detect duplicated requests. The value can
be freely chosen by the program that generates a query.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ID

QR| OPCODE |AA|TC|RD|RA| Z RCODE
QDCOUNT
ANCOUNT
NSCOUNT
ARCOUNT

Figure 4.4: The structure of a DNS message header.

QR A flag which is set if the message is a response.

OPCODE A value that states the purpose of the message. Typically 0
(QUERY), which indicates that the message is a request for an RRset.

A A A flag which is set if the name server that sent the response is authori-
tative for the domain that the query concerned.

TC A flag which is set if the message was truncated.

RD A flag which is set if the client wants the name server to pursue the
query recursively.

RA A flag which is set if the sender of the response supports recursive
queries.

Z Reserved. Must be zero.

RCODE A value that specifies the kind of error, if any, that the sender
of the response encountered when attempting to find an answer to a

query.

The header is immediately followed by QDCOUNT entries in the question
section, ANCOUNT RRs in the answer section, NSCOUNT RRs in the au-
thority records section, and ARCOUNT RRs in the additional records sec-
tion. The question section entries are not resource records, but entries that
contain a domain name, a type value, and a class value which together specify
which RRs should be fetched from the DNS when making a query.

4.4 Name Servers

Name servers are repositories for the data that makes up a DNS database.
The database is divided into zones which are distributed among servers. The
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information about the zones governed by a name server is usually stored in
a set of files accessible to the server. These files, which I call zone files, are
typically text files and they are read to memory when a server is launched.
Together the servers hold all the RRs associated with the domain names in
the database, including those that contain information about the structure
of the domain tree.

The main task of a name server is to answer queries regarding the data
stored in a database. Both queries and responses to the servers are sent as
standard DNS messages. There are differences in the kind of support that
name servers offer. Some servers do not offer a recursive service; they will
not attempt to acquire data that does not belong to one of their own zones.
Some will do so upon request by sending queries to other servers. Not all
RR types are supported by all server software. Typically, at least all of
the standard, non-obsolete types are supported, unless the standard is very
recent. Many servers also support some experimental types, such as CERT (see
Section 5.1). Currently, the most widely used name server is called BIND,
which has varying support for different types depending on the version used.

4.5 Resolvers

A DNS resolver is an interface to the Domain Name System. To be more
specific, it is a library of programs or routines that to some extent hides the
complexity of constructing, sending, receiving, and interpreting messages
required for communicating with name servers.

In order to acquire information from the DNS, a resolver needs to know the
IP address of at least one name server and to be able to communicate with
it. If a name server offers a recursive service, the resolver should need to
do nothing more than to send one query to that server in order to acquire
the desired information, or to find out that the information is not in the
database. If recursive service is not available, the resolver should still be
able to acquire referrals to other name servers until it can either find a name
server that has the desired information, or conclude that there is no server
that has it.

Resolvers usually have a cache in which RRs may be stored. The time limit
for storing an RR is specified by the TTL value of the record. Authoritative
data should be preferred over non-authoritative data when deciding what
data to keep in the cache. Having information in the cache in many cases
drastically speeds up the process of finding the answer to a question.
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4.6 DNS Security Extensions

The DNS, in its current form, does not support the checking of data integrity,
nor does it do much in terms of authentication. Therefore, hosts using the
DNS are vulnerable to certain kinds of attacks. They cannot be sure if
the resource records contained in a DNS message originated from a server
authoritative for those RRs. Neither can they be convinced that the records
were not modified on the way.

The IETF DNS Security Working Group is attempting to create a stan-
dard that would, when widely adopted, significantly improve the security of
the DNS. This would-be standard is called DNS Protocol Security Exten-
sions [11], henceforth referred to as DNSSEC.

DNSSEC uses digital signatures to achieve data integrity and origin authen-
tication. Three new resource record types have been defined, one for the
signatures, one for keys used for checking signatures, and one to convey in-
formation about names that do not exist and types of RRs that exist for a
given name.

The resource record type for signatures is called SIG. Resource records of this
type are used to cryptographically bind RRsets to the signer and a validity
interval.

A security-aware resolver needs to have access to the public keys of the
zones from which it receives signed data, in order to check that the data
was properly authorized and is current. Given that a resource record type
called KEY has been defined for public keys, servers with even basic DNSSEC
compliance can be used for public key distribution, even for keys other than
those needed by DNS servers and resolvers.

The third new RR type, NXT, is needed to securely indicate that certain
names do not exist in a zone. The NXT RR also contains a bit map which
can be used to determine what RR types are present for an existing name.

In addition to adding security to the Domain Name System, DNSSEC can
be viewed as a PKI of a kind. Resource records can contain any kind of
information. When a SIG record is created for an RRset, the information
contained in the set is bound to a domain name and the signing key. The
RRset and the SIG record together effectively create a certificate, a signed
statement about the properties of the entity that has the domain name.
The validity of a “certificate” is confirmed by checking the signature and its
inception and expiration times, as well as the TTL value of the SIG RR.
It could be argued that certificates do not need their own RR type, as a
certificate can be represented using multiple RRs of the already standardized
types. However, only those of entities’ attributes that have an RR type could
be certified through the use of this scheme. To get the expressiveness of such
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“certificates” on par with SPKI certificates, new RR types would nevertheless
be required.

4.7 Updates in the DNS

The DNS standard requires that information about every zone is kept on two
or more name servers. This is to ensure availability despite of host or link
failures, but it can also be that a query introduces less load to the network if
the querying host contacts the server to which is has the best network access.
In any case, the duplication of data adds to the effort required to maintain
a consistent database.

The DNS was originally designed to be a statically maintained database. The
data in it was expected to change, but not very frequently. Thus powerful
mechanisms for making updates weren’t all that necessary. FEditing zone
files by hand is still a common way to make updates. To avoid having to
make the same changes to several files, the updated files could be propagated
using F'TP or some other generic method. The DNS standard defines and
recommends a particular way to arrange full zone transfers. More recently,
other proposals for making updates have been made as well. These proposed
standards describe mechanisms for making incremental zone transfers, for
notifying of zone changes, and for making dynamic updates in the DNS. All
of these are briefly described below.

One of the name servers that are authoritative for a zone is designated as
the primary server for the zone, while the others are secondaries. The name
of the primary is included in the zone information. The difference between
a primary and a secondary is that when a zone needs to be updated, it is
the primary server’s zone file that should be edited by the zone administra-
tor. After editing, the running name server is signaled to get it to load the
updated zone information. The other servers authoritative for the zone peri-
odically check to see if changes to the zone have been made by checking the
serial number stored within the zone information. If the number has been
incremented, the secondary server sends a message with the opcode AXFR to
the primary, which indicates that the requester wants to receive a current
copy of the entire zone information. The primary should react by sending a
sequence of response messages containing the asked information. For more
details about the full zone transfer mechanism, refer to [21].

Full zone transfers waste a lot of bandwidth, as the entire zone information
needs to be transmitted even if the updates made to a zone have been small.
For this reason, a mechanism for only communicating information about
the changes has been proposed. Incremental zone transfers are described
in [26]. The procedure of making such a transfer is similar to making full
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zone transfers. A secondary server issues an IXFR request to the primary
when it wants to receive the changed portions of a zone.

The security of both full and incremental zone transfers can be improved if
DNSSEC support is available. This is done by using NXT resource records to
assure that every authoritative name and type will be present in full zone
transfers. For incremental zone transfers, the completeness of the transferred
zone information cannot be confirmed, but the integrity of individual RRs
can still be checked from the signature records.

A proposed standard, defined in [32], addresses the fact that, as described
earlier, all non-primary servers need to frequently check to see if the primary
server has updated a zone. The proposal describes a new opcode called
NOTIFY. Once a primary’s zone information has been updated, it can send a
notification message to other servers authoritative for the zone so that they
know to take action to get their zone information updated. The notification
message is a standard DNS message that has NOTIFY as the opcode; only a
subset of the message fields is used, however.

It would often be convenient if a zone could be updated simply by sending
messages to a name server authoritative for it. To eventually allow doing
so with a wide selection of server software, there is, at the time of writing,
considerable ongoing effort to design and standardize a DNS extension for
making updates dynamically. A proposed standard is described in [33|. The
proposal defines the UPDATE opcode, which, when supported by a name server,
makes it possible to add or delete RRs or RRsets from a zone; new zones
cannot be added. The presence of the opcode causes a DNS message to be
interpreted differently. The answer section, for example, is taken to contain
prerequisites which must all be satisfied for the update operation to take
place. An UPDATE message also contains the name of the zone to be updated
and naturally also a list of the updates to be made. Once constructed, the
message should be sent to the primary name server of the zone concerned.

The proposal for dynamic updates does not describe a method for check-
ing a message sender’s permission to initiate an update. Another proposed
standard, the Secure DNS Update [10], describes a mechanism for doing so.
Improvements to it are suggested in [9], and a simpler and more flexible al-
ternative is presented in [34]. Authentication is handled using either public
or symmetric keys, and the authority given by possession of a key is dictated
by the server’s policy. It has been suggested that a set of KEY RRs could be
used to represent the policy, but as the policy is only used by the server to
make access control decisions and need not be exposed to others, the zone
administrator should be free to select any kind of a presentation. A policy
could, for instance, limit the scope of authority of each key to certain domains
within a zone.

30



Chapter 5

Distribution of SPKI Certificates
Using the DNS

In order to build a reliable system on top of an infrastructure that makes
heavy use of certificates and depends on their availability, one should give
careful consideration to certificate management issues. One of the most im-
portant of them is certificate storage, which is not necessarily addressed by
the certificate infrastructure itself, as is the case for SPKI. The storage solu-
tion must scale well if it is to support an Internet-wide system that is open
for everyone to participate in. This chapter describes a way to use the Do-
main Name System as a globally accessible, distributed database from which
SPKI certificates can be retrieved on demand.

5.1 CERT Resource Record

Any data to be stored in the DNS must first be placed into a resource record.
Some of the most common types were already covered in Section 4.2. The
RR type most relevant to this thesis is CERT, which has the type number
37. It has not yet been standardized, and anything that is said about RRs
of type CERT in this thesis is subject to change. The specification for it can
be found in [12]. The purpose of the type is to facilitate storing certificates
in the DNS. CERT records have a header of the same format as all the other
RRs; the structure of the type specific RDATA field is shown in Figure 5.1.

CERT RDATA contains a type value which specifies the type of certificate
contained within the field. Among the currently defined certificate types
are SPKI and X.509. The type value 2 and the type mnemonic SPKI are re-
served for SPKI. In addition to the certificate type number, the CERT RDATA
contains a key tag, an algorithm identifier, and the certificate itself. Alterna-

31



CHAPTER 5. DISTRIBUTION OF SPKI CERTIFICATES USING THE

DNS
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TYPE
KEY TAG

ALGORITHM :
|
! CERTIFICATE or CRL |
|
|

Figure 5.1: CERT RDATA structure.

tively, instead of a certificate, the record may contain a certificate revocation
list (CRL).

The algorithm value specifies the hash and the public key algorithms used
in the creation of the certificate. The values used are the same as for the
algorithm fields of the KEY and SIG RRs (see Section 4.6) except that the
value zero indicates that the algorithm has either not been included in the
DNSSEC specification or that it is unknown to the entity that created the
CERT RR.

The current specification states that the key tag is a 16-bit value which
should be computed from a key embedded in the certificate. This definition
does not seem to account for the fact that not all certificates have exactly
one public key embedded in them. Some have none, and some have more
than one. Assuming that a suitable key can be chosen, the description of the
algorithm to be used for performing the calculation can be found from [11].
Before calculating the value, the key needs to be translated into the the same
format as it would have within a KEY RR. If the key type is not defined in
DNSSEC, the translation naturally cannot be done. In that case the tag
should be set to zero. If the tag is not calculated, for whatever reason, the
algorithm value must also be set to zero even if the algorithm is known and
defined in DNSSEC. This is because it is possible for a tag calculation to
yield the value zero, and thus a zero tag by itself cannot be taken to indicate
that a calculation has not been performed at all.

The CERT RDATA specification does not say anything about the format in
which an SPKI certificate should be in the certificate field. However, the
canonical S-expression format is an obvious choice in the sense that signatures
can then be checked directly from the RR if necessary. For the same reason
the S-expression should not be base64 encoded. Using base64 would also
increase the size of the certificate. As stated in Section 4.3, space is at
premium within DNS messages.

While there is no need for the octets within DNS messages to be 7-bit ASCII
characters, zone files are typically text files, as mentioned in Section 4.4. For

32



CHAPTER 5. DISTRIBUTION OF SPKI CERTIFICATES USING THE
DNS

this reason the CERT specification also defines a text representation for the
CERT RDATA. In a zone file a CERT RR could look like:

certs.to CERT SPKI 555 222 (

KDg6c2VxdWVuY2UoNDp jZXJOKDY6aXNzdWVyKDQ6aGFzaDM6bm9oMTA6YTIzNDU
2NzgbMCkpKDc6¢c3ViamVjdCgxMDpwdWJIsaWMta2VSKDEwOmh1Y2RzYS1ub2goNz
PLZX1TcGVjMTY6YjIzNDU2NzgbMDEyMzQ1NikpKSkoMzpOYWcoMToqKSkpKDk6c
21nbmF0dXJ1KDQ6aGFzaDM6bmOoMTAG6YzIzNDU2Nzg5SMCkoMTA6cHVibG]l jLWt1
eSgxMDpoZWNkc2EtbmO0oKDc652V5U3B1YzE20mQyMzQ 1N jc40TAXxMjMONTYpKSk
zMjplMjMONTY30DkwMT IzNDU2MTIzNDU2Nzg5MDEyMzQ1Nikp )

The type field is represented as an unsigned integer or as a mnemonic sym-
bol (e.g. SPKI). The key tag is given as an unsigned integer. The algorithm
may be specified either by using an unsigned integer or the corresponding
mnemonic, as specified in DNSSEC. The certificate itself is included in a
base64-encoded form, and may be divided into white space separated sub-
strings, which are concatenated to obtain the entire certificate. The certifi-
cate may span lines if the substrings are appropriately enclosed in a pair of
parentheses. In general, multi-line RRs can be indicated by grouping data
using parentheses; any line breaks surrounded by a “(” and a “)” are ignored.

5.2 Administration of Certificates

This section discusses the various issues involved in storing SPKI certificates
in the DNS. These include the tasks of determining the zones in which to
place a certificate, and choosing a name for the certificate. The actual act of
storing a certificate in the DNS through a zone update is also addressed.

It is up to an entity that possesses a certificate to decide whether to store
it in the DNS or not, and the decision should be based on the content and
purpose of the certificate. Naturally, certificates to be considered for storing
in a database in which updates are not instantaneous should have a long
lifetime, and should not be signed with temporary keys. In some cases it is
important for the storage decision to have been made prior to the time of
creation of a certificate, as is also explained in this section.

5.2.1 Choosing a Storage Location

An entity wishing to use the DNS for storing its certificates should choose
a zone for storing the certificates in and make arrangements for adding RRs
to that zone (see Section 5.2.4). Even once that is done, it is not obvious to
which party’s zone a given certificate should be stored. Each SPKI certificate
has an issuer and at least one subject, after all.
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Different SPKI certificate types were already presented in Section 3.1. Never-
theless, for the purposes of choosing storage locations it is useful to categorize
SPKI certificates differently, as I would like to use the kind of categorization
which allows the selection of a storage location to be made based on the cat-
egory alone. I take the categorization presented in [25] as a basis for mine,
which is described below. As the names of the categories are different from
the SPKI certificate types described earlier, there should be no confusion.

Trust certificates Certificates belonging to this category may be expressed
as (i, s,true, a,,v), where a, only contains rights of which none have
been acquired through delegation; i.e. a, only contains rights which i is
authorized to grant without possessing any certificates. The name trust
certificate is appropriate because i trusts someone else to decide about
the use of something that is its own. ¢ may want to keep certificates like
this to itself, and use them only when verifying a chain. That allows ¢
to easily control access to its own property.

Delegation certificates Certificates which are not trust certificates and
can be denoted (i, s, true, a,v) belong to this category. This category
should also be used if there is uncertainty about a certificate being a
trust certificate.

Permission certificates All certificates belonging to this category can be
written as (i, s, false, a,v) using a 5-tuple.

Identity certificates This category contains SPKI name certificates, and
generally any certificates expressible as (i, s, n,v).

When considering the categories, a certificate chain beginning from the issuer
of the first certificate is of the form 7?7 Dx(P|I)?, where T is a trust certificate,
D is a delegation certificate, P is a permission certificate, and [ is an identity
certificate. Usual regexp conventions are adhered to; i.e. parentheses are used
to separate elements, a|b means either element a or element b, a? signifies
that there are 0 or 1 a’s, and ax signifies that there are 0 or more a’s.
Chains ending with I cannot be used to prove authorization. [I’s cannot
appear anywhere else, except when used in combination with a certificate of
some other category, in which case they are needed to translate a name to
information that identifies an entity.

To make it possible to traverse a chain consisting of entities (nodes) and cer-
tificates (arcs), each node has to contain information about the arcs leaving
from it to all the different possible directions of traversal. Hence, if forward
search is to be used it is sufficient to store certificates in the issuers’ do-
mains only. The same applies for the combination of backward search and
storage at the subjects’ domains. However, Aura has compared different al-
gorithms and found that a two-way algorithm has the potential to be faster

34



CHAPTER 5. DISTRIBUTION OF SPKI CERTIFICATES USING THE
DNS

than forward or backward search algorithms [1]. Thus I propose that certifi-
cate storage locations be chosen in a way which allows for the use of two-way
search algorithms, instead of forward or backward ones.

To support two-way search all certificates except those which can only be in
the beginning or the end of a chain need to be stored in both the issuer’s and
the subject’s domains. From the certificate chain properties described above
we can see that delegation certificates (D) and only them can appear in the
middle of a chain. Thus they must be stored in two domains. Maintenance
of the same records in more than one place is undesirable because of possible
consistency problems, and should be avoided when possible. For this reason,
certificates belonging to the other categories should only be stored in one
domain. The storage locations for each certificate category can be determined
from the chain properties, and are shown in Table 5.1.

Certificate | Name server of
category issuer | subject
Trust X

Delegation X X
Permission X
Identity X

Table 5.1: Certificate storage locations.

5.2.2 Choosing a Domain Name

Every DNS entry needs to be given a domain name. It is also necessary to
know the name once the entry is to be retrieved. Names are, after all, used for
indexing in DNS databases, and for any RR to be found the value by which
it is indexed must be known. Naturally, the usual DNS naming conventions
must be adhered to when selecting a name, regardless of whether the name
is for a CERT RR or for some other type of RR. These conventions were
discussed in Section 4.1.

Let us now consider if there are any additional naming issues that apply to
SPKI CERT RRs in particular. SPKI certificate retrieval from the DNS can
be generalized as an occurrence in which entity k; (where i = 1 or i = m)
makes queries and acquires a valid certificate chain C' = ¢y, ¢9,...,¢n_1 =
(k1, ko, dy,ar,v1), (ko, k3, do, az,v2), ..., (km—1,kmsdm—1,0m—1,Um—1). This also
applies for retrieval of single (RRsets of) certificates, in which case m = 2.

Let it be so that delegation certificates concerning k; (where [ = 1,2,...,m)
are stored in domain n; if k; is the issuer, and in domain n; g if k; is the
subject. Trust certificates issued by k; are stored in domain n; ;. Permission

35



CHAPTER 5. DISTRIBUTION OF SPKI CERTIFICATES USING THE
DNS

and identity certificates issued to k; are stored in domain n;g. Other cer-
tificates are not stored in the DNS. For convenience, I often write n; when
I mean both n;; and n; 5. The two domains may be the same, but do not
need to be.

In a typical case, k; wants to acquire and form the chain C' between itself and
the entity k,, at the other end of the chain in order to verify the existence of
a trust relationship between it and k,, by closing the chain into a loop. Alter-
natively, k,, may need to acquire C' in order to give it to k; for verification.
Let us denote the entity at the end of the chain that is opposite from k; as k;
(where j € {1,m},j # 7). It should be safe to assume that k; knows its own
domains n; prior to acquiring any certificates in C'. Let us also assume that k;
knows the domains n;. This is a reasonable assumption, as k; wants to form
a chain between itself an k;, and it therefore must already know something
about k;; if it does not know n;, it may be able to acquire that information
by asking k;. For chains that are not trivially short, knowledge of n; and n;
is not enough for acquiring the whole chain. Section 5.2.3 proposes a way for
making the rest of the required names possible to acquire during certificate
retrieval. The proposal does not impose any naming restrictions aside from
those already defined in the DNS specification.

From the above analysis of certificate retrieval it is possible to conclude that
it matters little how certificates are named. n; and n; are assumed to be
known, regardless of what they are. ns,ns,...,n,_; can be acquired, also
regardless of what they are. It is not even essential for the names to be
unique. The only requirement really is that the domains need to belong to
one of the zones for which the name server chosen for storing a certificate is
authoritative for.

Nevertheless, for example in a system in which keys are frequently replaced
with new ones, it would be useful to have a method of automatically gen-
erating suitable domain names for the RRs concerning the new keys. I will
now consider different options for naming certificate data. As I do so, I use
the symbols given in Table 5.2.

Symbol | Meaning Example value
domain | Domain at which the zone governed by | tcm.hut.fi
the name server used by user is rooted

host Hostname of the machine used by user | camphor

user Username alice

hash(k) | Value unique for entity & 9f7bc4c0563d8042
lcafebabebb551011

8 i for issuer or s for subject i

Table 5.2: Symbols used in naming discussion.
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The DNS has traditionally been used to store various attributes of different
hosts. Certificates, however, often belong to programs or people rather than
hosts, and thus there may be no obvious host whose domain name to use when
storing certificates. Even if there were, the use of its domain name could be
inefficient. As described in Section 4.3, there are certain limitations to the
size of a DNS message. A host could have hundreds of users, each running
several programs, and each program using many different certificates. If all
the certificates were stored in the host’s domain, they would all be returned
in a single message when querying for CERT RRs. In almost all cases most
of the data returned would be irrelevant to whoever made the query. An
attempt should be made to choose the domain names in such a manner that as
little irrelevant data as possible is returned in response to a query. Therefore
domain names of the form domain, host.domain, or even user. host.domain
would all be less than ideal in many cases.

Instead, it would be better to find a domain name unique to an entity that a
certificate concerns. This can be accomplished by adding a label that, for ex-
ample, contains a hash of information unique for the entity, a value returned
by an incremental counter, or some random data. For reasons of privacy
it is best to choose a label which does not directly identify any individual.
Any hash algorithm should be chosen in such a way that the length of an
encoded hash value is not greater than 63 bytes, which is the limitation for
domain labels. By using this scheme, certificates issued to key kqgent could
automatically be given a name of the form hash(kqgent) . domain.

Even using the above naming method, several certificates can still get the
same name. One might think that taking a hash of the whole certificate
would be the best solution, but because the hash of the certificate that one
is looking for is usually not know, such a naming system cannot be used.

A Proposed Naming Scheme

Usually, one is interested in certificates either issued by an entity or issued
to an entity, but not both. Therefore it is possible to further reduce the
number of CERT RRs returned by a query by choosing a different domain name
depending on whether an entity is the issuer or the subject of a certificate. I
suggest prepending label i for issuer, or s for subject. Resulting names are
of the form is. hash(k).domain.

The above order of is and hash(k) allows one to configure a name server in
such a way that any domain name ending in hash(k).domain can be used
to refer to the same set of records. Suppose one does not was to distin-
guish between certificates issued by and issued to k,gent, and gives all such
certificates the name hash(kqgent).certs.to. Through the use of wildcards
in the appropriate zone file, one can arrange for a query with a name of
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the form is.hash(kygent) . certs.to to result in the same RRset as queries
named hash(kqgent)-certs.to. The result RRs will have the name used in
the query, however. The zone file could contain something like:

hash(kagent) - certs.to CNAME a.hash(kggent).certs.to
% hash(kegent) - ceTts.to CERT SPKI 0 0 KDEyOmNlcnRpZmljYXR1MSk=
*.hash(kagent).certs.to CERT SPKI 0 O KDEyOkNFUlRJRk1DQVRFMik=

If a permission certificate is issued to Kggent by Kservice, it is likely that no
other entity wants to receive that certificate if it is interested in certificates
issued to it by kgervice- Thus it makes sense to store the particular certificate
under s.hash(kqgent) -domain rather than i.hash(kservice) - domain. Mem-
bers of any certificate category should be named according to the issuer if
stored in the issuer’s domain, and according to the subject if stored in a sub-
ject’s domain. Figure 5.2 illustrates my scheme. I believe that this naming
method is, in general, well-suited for selecting a domain name for a certifi-
cate. Nevertheless, I do not suggest that it always be used as sometimes
some other method may better meet the requirements at hand.

trust delegation permission
certificate P AS certificate P. Ac certificate
(S,PAg, server’s (PAG,PA client’s (PA;,C,
true,a,v) policy true,a,v) policy false,a,v)
admin admin
s s N N
s v N N
s ’ N N
s v N N
s s N N
i.hash(S).s i . hash(PAs). pas s. hash( PAc). pac s. hash(CQ). ¢

Figure 5.2: Choosing storage locations and domain names according to cer-
tificate types and entity identifiers.

Anonymity

While the above naming scheme allows user to construct domain names
which do not reveal her username or any of her public keys, the domain
part of a name can still be very revealing. I cannot think of a practical
way to avoid this. Hence, if user wishes to have completely anonymous
certificates, she should anonymously arrange for the use of a zone for storing
those certificates, and select a zone which is not known to be used by her for
any purpose.
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Different Types of Certificates

Applications typically use only a certain kind of certificates, be it SPKI,
X.509, or some other certificate type. Suppose that Bob has a set of certifi-
cates all concerning entity k,4en:, and that some of the certificates are SPKI
ones and some are not. If Bob places all of them to the DNS with the name
S . kagent - bODb, they will all belong to the same RRset because they are all
RRs of the same name and type (CERT). If Bob has reason to believe that the
SPKI certificates will never be needed together with the non-SPKI ones, it
is best to give them a different name, for example s. kqgent - spki . bob. Doing
so should help reduce the sizes of answers to certificate queries. In general,
to reduce the amount of irrelevant data returned as replies to queries, it is
best to give a unique name to each set of certificates in which no certificate is
ever needed together with any certificate that is stored in the same location
and does not belong to the set.

Encoding

As there is often a need to write down domain names, for example in a
zone file, labels containing true 8-bit octets should be written as printable
decimal or hexadecimal numbers. Considering the size limitations of DNS
messages it is better to select the more compact hexadecimal presentation.
The commonly used base64 encoding would be even more efficient, but the
fact that data encoded using it contains both uppercase and lowercase char-
acters is likely to cause problems. Although the DNS standard states that
case differences should be retained when processing domain names, current
implementations are likely to use case insensitive string comparisons, as the
names and addresses used in the Internet are traditionally case insensitive.
Creating a new, efficient, printable and case insensitive encoding just for one
purpose would impose a burden upon implementors, and is therefore best
avoided unless found to be necessary.

5.2.3 Storage Considerations When Creating a Certifi-
cate

Unless someone can create a naming scheme in which keys uniquely define
names which both spare the distributed nature of the DNS and allow people
to choose which zone administrators to trust, it will be necessary to have some
additional information available which allows translation from keys to domain
names. Intuitively, it seems impossible to find such a scheme without being
selective about which key to accept as one’s public key, which is something to
be avoided. Hence it seems that location transparency cannot be achieved.
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One way to arrange translation of keys to names would be to build another
global database that scales well, in which hashes of keys are used to index
entries containing a domain name. However, then one of the motivations
for attempting to use the DNS for certificate storage would be lost, namely
being able to arrange the storage using existing systems.

One very viable option is to include some information about domain names
in certificates themselves, and that is what [ will mostly consider. Leaving
domain names outside the certificates would increase the likelihood of denial
of service attacks, as there would then be the possibility of attacks made
by stopping someone who has a certificate from acquiring the information
necessary for locating the rest of the certificates needed for a complete chain.
Blocking queries to some external source of location information does not
help an attacker when the information is already in the certificate. Also, it
can be quickly noticed if the information in the certificate has been falsified
as it is protected by the signature in the certificate.

SPKI authorization and attribute certificates include the fields issuer-loc
and subject-loc, which can be used for adding URIs into certificates, as
described in Section 3.2.1. The URI syntax is defined in [3]. A URI is of the
form scheme: scheme_speci fic_part, where scheme is a string that specifies
the naming scheme used in the scheme specific part of the URI. Registra-
tions of the specifiers are handled by Internet Assigned Numbers Authority
(IANA). At the time of writing, no prefix has been assigned for DNS do-
main names. [ define and adapt the use of a new naming scheme specifier,
dns, but for the time being neglect to register it with TANA. URIs for ex-
perimental schemes may be used by mutual agreement between parties [4].
URIs following my scheme are of the form dns:dns_domain_name, where
dns_domain_name is any valid domain name of any DNS domain name
space.

The above dns URI syntax definition can be expanded to allow domain names
to be somehow abbreviated, which may be desirable as the names can be long.
I do not give a proposal for a suitable abbreviation, but may in my own
implementations leave out redundant information by writing dns:@domain
to express is. hash(k).domain, for example. hash(k) should remain obvious
from the context, and ¢s can be chosen freely.

The two fields, issuer-loc and subject-loc, should be used to include
the domain names of the issuer and the subject. It is not necessary to
include both fields in any certificate, however, since someone who has fetched
a certificate from the DNS should know which domain the certificate was
acquired from. That information need not be repeated in the certificate itself.
Hence certificates stored in the issuer’s domain need to include information
regarding the subject’s domain, and vice versa. Since delegation certificates
are stored in both the issuer’s and the subject’s domain, it may be more
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convenient to include both fields into them rather than to create two different
certificates.

For threshold subjects, there needs to be more than one URI, one for each
subject. I recommend that the URIs be listed in the same order as the
subjects in the threshold. An effort should also be made to list the domains
for all the entities that possess a name given as a subject of an attribute
certificate. In that case the order of the URIs is not significant, however.
If such a list is unavailable and cannot be created, an URI from which the
information can be acquired could be included instead. The information
would probably be maintained by the owner of the name space.

Name certificates do not have and do not need to have issuer-loc and
subject-loc fields, because they are not by themselves useful in making
authorization decisions. They can only be used to prove authority together
with authorization or attribute certificates, and those certificates may contain
the location information. !

According to the current SPKI certificate specification, the location informa-
tion can only be placed within the certificate body which will be included
into a signature calculation in its entirety. Thus any changes to location
information of a certificate cannot be put into effect without issuing a new
certificate. The old certificate should then be revoked. Certificate revocation
is not a trivial problem, however, and thus it is advisable to try to ensure that
the location information used is such that it stays valid for the entire validity
period of a certificate. When in doubt, the validity interval should be set to
be sufficiently small. Incorrect location information could cause wasted effort
to those looking to form a certificate chain, although that should not cause
actual denial of service for as long as properly implemented search algorithms
are used and the network can handle the additional workload.

Increasing the Lifetimes of Domain Names

The lifetimes of URIs can possibly be increased by using aliases. Suppose
there are several certificates stored in the domain certs.fr, and that for
some reason certificate maintenance can no longer be done for the zone the
domain resides in. By adding a CNAME RR with the name certs.fr and the
value certs.to one can move and continue maintaining the certificates in
the domain certs.to.

Suppose that the maintainer of the zone containing certs.fr does not agree
to add the CNAME RR. Then there is not much that can be done except for re-

! Acquiring a chain to prove a name could fail, however, because the issuer domain of
the last certificate of the chain would possibly not be contained in any of the certificates
stored in the domain of the subject of the chain. That would cause a backward search to
fail.
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placing all certificates affected by the address change. It is, however, possible
to take precautions against something like this by using so-called forward-
ing services that provide a “permanent” address for their clients. Currently,
there is at least a service that will forward HTTP requests sent to one do-
main to whichever domain the service user has configured them to go, as
well as a service which provides a user with a DNS domain name and allows
the corresponding IP address to be dynamically changed. There could also
be a similar service which would assign each client a “permanent” zone and
allow the name servers responsible for a zone to be changed upon request. A
certificate creator would then have a practically unlimited number of “per-
manent” domain names to use in certificates and the freedom to choose any
available name servers for maintaining the zone information on.

URIs Outside Certificates

One might also consider storing the URIs within CERT RRs, but outside
the certificates themselves. The same pieces of information would still be
contained within CERT RRs, but the location information could be changed
without replacing certificates. The current CERT RR definition does not con-
tain suitable fields for URIs, but that is not a problem as the certificate
portion of a CERT RR may contain type-specific internal subfields. Integrity
of the URIs, when not stored within certificates themselves, could not be
guaranteed without using SIG RRs, however.

Certificates Outside the DNS

In this section I have assumed that all certificates needed for a chain are
stored in the DNS. If some certificates have not been placed there, they need
to be available from somewhere else, or it might not be possible to acquire all
of the other certificates belonging to a chain. Other locations and protocols
to use for fetching certificates can also be specified by including URIs in
certificates.

5.2.4 Updating a Zone

A certificate must be packed into a CERT RR before it can be added to a zone.
The fields to be filled in were covered in Sections 4.2 and 5.1. I propose that
if an SPKI certificate is to be stored in its issuer’s domain, the key tag be
calculated from the subject field, and vice versa. If the field to be used does
not contain a single key which can be converted into a standard format for
the calculation, then the tag value should be set to zero. If the field contains
a hash of a key, we recommend that the key be acquired for the calculation
if possible.
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All the data in a DNS database is stored in name servers. To add a CERT
RR to the database one needs to have the authority to make updates, either
directly or through some other entity, to the data of the primary server of
the zone to which a certificate is to be added. Different methods of making
updates were considered in Section 4.7.

One update method is to ask the administrator of the zone requiring an
update to edit the zone information and to notify all authoritative servers
about the change. Such a solution could consume all of the administrator’s
available time. The zone maintenance needs introduced by frequent adding of
certificate RRs to zones, as well as removal of expired and revoked certificates,
are likely to be considerable. Some form of automatization is almost essential.

Ideally, every user that wants to make updates to the database would be
assigned a part of the domain name space to administer and given a key
with which to sign requests in order to initiate updates. It currently looks
like there will a DNS dynamic update standard that offers a practical solution
for doing so once widely implemented.

In any case, merely managing the zone maintenance rights given to users is
likely to be a large task, and may require further automatization and ad-
ministrative tools. If maintaining a secure system requires too much work,
people will sacrifice the security for convenience. For this reason it is very im-
portant to design a convenient-to-use administrative interface to any system
that makes extensive use of certificates and involves administrative duties.
Designing such an interface could among other things include finding a way
to visualize trust relationships and security policies. Usability is an area that
warrants a lot of further research, but it is beyond the scope of this thesis.

5.3 Retrieval of Certificates

Communication with name servers is handled solely through sending and re-
ceiving DNS messages. To acquire all the certificates stored in the domain
certs.fr, one would first need to construct a message in which the question
section has an entry with the name certs.fr and the type CERT. The mes-
sage should be sent to the name server authoritative for the domain. That
server is not always known, and needs to be tracked down prior to asking
for the certificates. A server offering recursive service can be asked to do so;
otherwise the task is left to the client. Once the name server information
is known, and possibly cached as an NS RR, the certificate request can be
sent. The request then either times out, or a reply is received. The reply can
indicate an error or that no certificates matching the search criteria exist, or
it can contain a set of CERT RRs.
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Once an RRset has been acquired, the desired certificates must be picked
from the set. Throughout this section, I assume that the naming and storage
location schemes proposed earlier in this chapter are in use. Suppose we want
all the SPKI certificates in domain i.hash(k;).certs.fr with the subject
ko. We should first choose those CERT RRs which have the type SPKI. From
them we can quickly rule out those RRs which have a non-zero algorithm
identifier and whose key tag value is not the same as that calculated from k.
It should be noted that use of key tags is not compulsory, but can make the
selection process faster. The subject fields of all the remaining certificates
must be checked to see if ky is included. After the correct RRs have been
selected, what remains to be done is to extract the certificates themselves
from the RRs.

5.3.1 Caching

Once an answer to a query has been acquired, the results can be cached to
improve the performance of further queries. Resolvers usually do caching, as
mentioned in Section 4.5. Caching can cause problems, however, unless the
zone administrator puts some effort into selecting and updating the time-to-
live values associated with RRs. The TTL value can be defined separately
for each record in a zone. If a change to some RR is anticipated, its TTL
value should be kept low enough so that it will expire in caches before the
actual change is done.

Choosing the maximum time for which caching is allowed for SPKI CERT RRs
is different from doing the same for most other types of RRs, in the sense that
an SPKI certificate itself already contains an explicit statement that describes
when the certificate is valid. If a zone administrator takes that information
into account when maintaining a zone — perhaps using a script or intelligent
server software capable of interpreting SPKI certificates — the TTL values
could be made to quite accurately correspond to the actual lifetimes of the
certificates. Frequent zone updates would be required, however, and possible
revocations of certificates are not accounted for by this scheme.

Another possibility would be to have resolvers interpret the contents of SPKI
CERT RRs before caching them. However, it could be argued that the task of a
resolver is not to interpret the contents of RRs which do not contain database
indexing information. In any case, adjusting TTL values in the server end
will require less network traffic and support the use of thin clients.

The simplest solution is not to consider certificates’ validity information in
either zone maintenance or resolvers. If the client then notices that she has
received expired certificates from a resolver, she should have some way to
acquire more recent data. Some resolvers allow the user to specify an option
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which indicates that returned records should come from an authoritative
source; this option can be used to avoid receiving cached data.

5.3.2 Search Algorithm

As proving a permission requires an entire chain of certificates, it is useful
to have an implementation of an algorithm that is able to obtain an entire
chain of certificates from the DNS available for applications to use. Such an
algorithm could possibly be contained within a resolver, or built on top of it
into a library of its own. I present a suitable algorithm below. It is based
on the two-way search algorithm presented in [25], and attempts to find a
suitable path from a directed delegation network formed by a DNS database
containing certificates. A path in such a network can be directly translated
into a chain of certificates.

It should be noted that there may not be any one certificate chain that alone
proves all of the required rights, but more than one chains together might
do so. The algorithm presented here does not account for this, and in such
a case returns no chains at all.

For simplicity, it is also assumed that there are no threshold certificates in
the database. Intuitively, it should be possible to modify the algorithm to
obtain proof containing threshold certificates, but the proof would not always
be representable as a chain. Aura has presented as similar algorithm that
does handle threshold certificates [2].

Symbol | Meaning

k identifier of the current entity

n base domain name of the current entity
k. identifier of the verifier

Ty base domain name of the verifier

k. identifier of the final subject

N base domain name of the final subject
Tys forward search tree

Ths backward search tree

Table 5.3: Constant and variable definitions for the algorithm.

Forward search

1. Set k =k, and n = n, and T to an empty tree.

2. Fetch all certificates using the resolver and the name i.n.
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Filter out all certificates that are irrelevant (delegation rights, autho-
rization, validity).

Filter out all certificates whose subject is already present in T%;.

For all certificates whose subject is k, check the signature. If the check
fails, filter out the certificate (and issue a warning). Otherwise add the
certificate to T, and return it (7%, has no branches, and is therefore
still a chain) indicating success.

If there are no more certificates left, jump to backward search, but only
fetch certificates from the DNS once. If that is not enough, fail.

If there is only one certificate left, check its signature, mark it as
checked, add it to T, set k to its subject and n to its subject’s location.
Jump to step 2.

The search tree branches. Add the remaining certificates in the current
fetch set to 1. Jump to backward search.

Backward search

1
2
3

4.

5

Set k = k, and n = ng and T, to an empty tree.

Fetch all certificates using the name s.n.

Filter out all certificates irrelevant to the current search problem.
Filter out all certificates whose issuer is already present in Tj,.

For all certificates whose issuer is present in T, check the signature.
If a check succeeds, check the signature of the found target if marked
unchecked. If either one of the checks fail, filter out the certificate
(and issue a warning). Otherwise construct a chain by traversing T
backward from the target certificate to k,, inserting each certificate
into the beginning of the chain. Append the current certificate, and
then the current 7;¢ search path, also reversed. Return the resulting
chain and indicate success.

If there are no more certificates left, terminate and indicate failure.
Add the remaining certificates to Tjs.

Select one of the leaves of Tj, setting k to its issuer and n to its issuer’s
location. Memorize the current T}, search path (for example on stack),
then continue from step 2.
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Typically existing certificate paths are found quickly, but negative answers
can take even millions of steps [1]. This is because the algorithm presented
above performs a complete search. In large delegation networks such a search
can be too expensive, and some heuristics are required to decide when to
terminate the search. Heuristics can also be applied to selecting the most
likely successful search path when the backward search tree branches. Both
kinds of heuristics that are directly applicable to the algorithm given here
are presented in [25].
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Chapter 6

Resolver Implementation

I have created a DNS resolver which can be used to retrieve CERT RRs, and
which can be readily integrated with the TeSSA architecture implementation
as a new component. This chapter begins describing the resolver by first
covering the goals set for the resulting implementation before the design
work was started. It then continues by describing the interface and the high-
level structure of the resolver, and explains the major design choices made as
well as the reasoning behind them. The chapter ends with a short description
of how the resolver was tested.

6.1 Functional Requirements

The requirements for the resolver, based on the needs of the project, were
decided to be the following:

e Implements basic DNS resolver functionality, supporting RR types A,
CNAME, MX, NS, PTR, SOA, TXT, and CERT.

e The class IN is fully supported. Other classes currently need not be
supported, but should not require change of design if later added.

e Is able to pursue answers recursively.

e Performs caching of RRs to avoid long delays fetching frequently re-
quested records. The user interface should, however, offer an option
to disable cache lookups by allowing clients to demand authoritative
replies. This option is useful at least if the resolver returns expired
certificates, as explained in Section 5.3.1.

e Fits well within the existing system of TeSSA, i.e. is built on top of
the JaCoB framework (see Section 6.2.2), like the other protocols of
the TeSSA architecture implementation.
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e Facilitates handling of SPKI certificates by having an interface that
returns the certificates contained within SPKI CERT RRs as Java objects.

e s capable of acquiring and returning entire chains of the aforemen-
tioned objects to allow convenient acquisition of proof of rights.

6.2 Design Goals

The requirements given in Section 6.1 only concern those features of the
resolver that are visible to the user. It is in the best interest of a software
implementor to also establish other goals that help to keep his or her work
pleasant. When the component to be built is too big to allow the work
involved to be easily grasped and estimated, it is best to try to divide the
work into smaller pieces. Constructing a small component is rarely a daunting
task, and progress is easier to follow as each piece gets completed. Smaller,
more generic components are also more likely to get reused.

I thus chose myself the goal of building the resolver by using simple and
easy-to-understand components as building blocks. I also wanted to apply
design patterns in my work to ensure that I make use of those design choices
that have been found to work well in the past. The task of choosing suitable
patterns had already been done by the designers of the JaCoB framework (de-
scribed below). Creating my design the “JaCoB way” forced me to rigorously
utilize design patterns. In order to be more certain that the implementation
corresponds to the design, I also decided to include some statements in the
code with the sole intent of revealing errors in the program logic.

6.2.1 Design Patterns

When examining well-structured architectures one may notice recurring pat-
terns, which are simple and elegant solutions to specific design problems.
Typically, they are the kind of solutions that people do not tend to discover
until after some redesign cycles. The authors of [16] attempt to capture de-
sign experience by presenting several of such solutions in a form they call
design patterns. The purpose of a design pattern is to name and describe
a solution to a general design problem in a particular context, and to do
so in a way which allows people to apply the solution to their own designs
effectively without having to re-invent it. Utilization of design patterns in
software development tends to result in collections of small, highly regular
classes and communicating objects.
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6.2.2 The JaCoB Framework

The Java Conduits Beans (JaCoB) framework [24] applies design patterns
heavily. The framework is intended to provide developers with some of the
non-protocol-specific functionality that is commonly found in cryptographic
protocols. Our implementation of the framework is written completely in
Java, and takes advantage of the language-level security features of Java 2
to add to the security of the JaCoB environment.

Protocol architectures built using the framework consist of software compo-
nents called conduits. There are five kinds of conduits, which are shown in
Figure 6.1. By connecting conduits to each other one can construct entire
protocol stacks with highly complex functionality. Such a system is made
dynamic by the different states that Sessions may have, as well as the infor-
mation that flows through the system in the form of messages.

oo O0-=--0
Pr ot ocol

: Adapt or .
’ Factory Sessi on

Figure 6.1: The five kinds of conduits provided by the JaCoB framework.

6.3 Functional Description

This section describes how external entities can interact with the resolver, and
what they can accomplish by doing so. The preparations necessary before the
resolver is ready for use are covered first. After that, the services provided by
the resolver are described generally, without going into method-level detail
in explaining how they are used. As applications access the resolver through
its interfaces, the functionality available through each interface is covered
separately.

6.3.1 Instantiation and Initialization

Before the resolver is ready for use, an instance of it must be created and
appropriately initialized. To provide the resolver with the information it
needs to pursue answers to queries, its cache must be initialized to contain
the names and IP addresses of the name servers to use. These are provided in
the form of NS and A RRs. Records of other types can also be cached if desired.

a0



CHAPTER 6. RESOLVER IMPLEMENTATION

The same instance of the cache is shared by all resolver instances in the same
(virtual) machine, and it is thus sufficient to perform the initialization once
per execution of the machine.

The resolver depends on an underlying protocol stack as a means to commu-
nicate with name servers. As soon as the answer to a query cannot be found
from the local cache, the resolver needs to already be attached to a UDP
protocol component. To hook the resolver up with UDP it must be passed
a reference to an InstallationAdaptor instance that is capable of creating a
session with UDP, as well as the UDP port that the resolver should listed to.

Unlike most resolver implementations, this one has no configuration file. As
the resolver is rather simple and does not have many options, I felt that it
would not be too much trouble for application programmers to have their
applications pass the required pieces of information to the resolver through
method calls. All of the necessary information can either be passed to the
constructor of the resolver during instantiation, or later by calling methods
dedicated for supplying the information.

6.3.2 Interfaces

The resolver has multiple interfaces, of which an application developer is free
to use any or all. The lowest-level interface is the DnsResolver conduit itself.
On top of that, there are components that add to the core functionality and
have interfaces of their own. Those components that one does not desire to
use need not be instantiated. The higher-level components depend on the
lower-level ones, however. The interface layers, ordered from highest-level to
lowest-level are shown in Figure 6.2.

appl i cation ‘

A 4 A
| CertificateChai ner |
v l nmet hod cal | s
| Quer yMaker |
Y
A A A lmessages
| DnsSessi onAdapt or | | DnsMessageAdapt or |

A A

\ 4 \ 4
[ ]
‘ DnsResol ver v v ‘

Figure 6.2: The interfaces of the resolver.
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DnsResolver

This Protocol conduit contains the logic of constructing and interpreting
binary messages understood by name servers, recursively pursuing answers
to queries, checking and updating the cache, as well as the creation and
termination of sessions upon request. Applications can communicate with
the DnsResolver conduit by sending messages containing DnsMessage, In-
stallMessenger, or UninstallMessenger instances to it. The DnsResolver will
send replies as messages that contain either a DnsMessage or a NotifyMes-
senger, along with other data.

DnsSessionAdaptor

This Adaptor conduit facilitates the creation and termination of sessions
with the DnsResolver. With a DnsSessionAdaptor attached to the “top”
side of DnsResolver, session requests can be made by calling the methods of
the adaptor. Notification of completion or failure of the operation can be
requested by supplying a reference to a class instance that implements the
callback method to use.

DnsMessageAdaptor

The purpose of this Adaptor conduit is to allow sending and receiving of
messages between an application and a DnsResolver simply by passing Dns-
Message instances to method calls. Receival of messages is optional, and is
accomplished through callback methods. A DnsMessageAdaptor can only
be used for sending and receiving messages when a session with it and a
DnsResolver exists.

QueryMaker

This component provides a typical resolver/application interface. Such in-
terfaces tend to have at least three functions: domain name to IP address
translation, IP address to domain name translation, and a general lookup
function for retrieving RRs of any type. QueryMaker has a method for each
of the above functions. In addition it also provides a method for retrieving
SPKI certificates as Java objects. The method filters out CERT RRs of types
other than SPKI. It accepts an optional key tag value, which, if provided,
will be used to determine which SPKI certificates should be included in the
result. The use of key tags during retrieval was explained in Section 5.3.
Each of the mentioned methods expects domain names to be absolute; no
names relative to the local or any other domain should be used. Each method
allows the caller to demand an authoritative reply.
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QueryMaker is not a conduit, and thus uses Adaptor instances — in this
case DnsSessionAdaptor and DnsMessageAdaptor ones — to interface with
the conduit system. A reference to a DnsSessionAdaptor must be provided
upon instantiation. QueryMaker uses the Adaptors to start a session, send
a query, receive a reply, and finally to end the session.

CertificateChainer

This class facilitates retrieval of entire chains of certificates by implementing
the algorithm described in Section 5.3.2. Each time the algorithm is executed,
it must be provided with the following information: issuer identifier, issuer
location, subject identifier, subject location, and the permissions that the
chain must prove. Validity will be checked according to the system time at
the time of execution. CertificateChainer depends on QueryMaker to acquire
the certificates needed for forming the chain.

6.4 Internal Structure and Implementation De-
tails

The reason for using the JaCoB framework to implement the resolver was
given in Section 6.1. This section presents the conduit structure of the re-
solver, which is illustrated by Figure 6.3. Every one of the conduits the
resolver consists of are not described in detail, but details are given when
they are felt important for understanding how the resolver works.

When a client wants to establish a session with the resolver, it should first
create a conduit, e.g. a DnsMessageAdaptor. The client can then request
that the created conduit be attached to the resolver by sending a message
to side B of the DnsResolver. The request will be received by a Conduit-
Factory instance, which will create a new DnsSessionProtocol and attach it
to the conduit provided by the client. Sessions are terminated in a similar
manner. The current implementation allows there to be a maximum of 256
simultaneous sessions. The internal structure of DnsSessionProtocol is shown
in Figure 6.4.

A query sent by a client is directed to a DnsSessionProtocol instance, which
only has one internal conduit. The conduit is called QuerySession, and it
contains the logic required for pursuing an answer to the query. Its states as
well as possible state transitions can be seen from Figure 6.4. The picture
also shows which states access the cache.

InitialState initializes the session, as well as re-initializes it if a CNAME RR is
encountered. ChooseServersState selects the name servers to send queries to
by choosing the most promising NS RRs among those in the cache. Cache-
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Figure 6.3: The conduit structure of the resolver.

State checks if an answer to the query can be found from the cache, and if
so, returns it to the client. QueryState sends and receives messages between
name servers, and also handles timeout situations. AnalysisState analyzes
messages received from name servers, and decides what to do next.

There can be at most one outstanding query per QuerySession, because it
has instance variables that are used to store information regarding the query
being processed, if any. A client must either create a new session for each
query it wants to make, or it must at least wait for a reply from QuerySession
before sending a new query to it. It would have been possible to implement
the session in such a manner that there could be multiple outstanding queries,
but for simplicity I chose to support only one.

The task of the Mux within DnsResolver is to direct incoming messages to
the correct session. To do this, the Mux lets its DnsSessionAccessor instance
to check the eight most significant bits of the ID field within the header of the
incoming message (the ID field was mentioned in Section 4.3). Each session
has its own unique ID, which directly corresponds to the aforementioned
bits. Thus the Mux can easily choose the session to which it should forward
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Figure 6.4: The internals of DnsSessionProtocol.

incoming messages. It is possible that there is no matching session; in that
case the message ends up in the Adaptor that is connected to the Mux, which
simply drops the message. Delays in the network may cause the arrival of
an answer to a query to be delayed long enough for the session for which the
message was meant for to have already been terminated. The DnsSession-
Accessor also has the task of writing the appropriate session ID to all outgoing
messages. The least significant eight bits in the message header ID field are
used by QuerySession to distinguish between the various messages sent and
received between itself and a name server.

The purpose of CoderSession is to translate the message content between
DnsMessage object and byte array formats. This allows the conduits above
CoderSession to manipulate DNS messages as Java objects. Underlying pro-
tocols, on the other hand, have binary encoded data readily available for in-
clusion in UDP packets, for example. This resolver implementation is meant
to be attached directly on top of a UDP protocol conduit.

6.5 Testing

The resolver was initially tested as a stand-alone unit, without the underly-
ing protocol stack. This was accomplished by creating a dedicated Adaptor
to simulate the network. It was thought best to check what kind of mes-
sages would be going to name servers before actually letting them go there.
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The resolver is also faster to launch when other protocol layers need not be
instantiated along with it.

Once the output of the resolver looked sensible and the input handling seemed
to work, UDP, IP, ARP and Ethernet protocol conduits were instantiated
and attached to a DnsResolver. The resulting system was first tested with a
simple program to send packets with in order to confirm that packets were
getting transferred correctly. After that the resolver was considered ready
for testing with name servers.

I was prepared to take an existing name server and to add support for CERT
RRs to it, but that proved to be unnecessary as version 8.2 of BIND, which
does support certificates, became available in time for testing. Minor changes
to the code were required, however, as the CERT RDATA zone file loading
code was recent and still contained errors that needed to be fixed. Slight
modifications were also made to accommodate the use of larger UDP packets
than the DNS standard allows. This was done because there was no JaCoB
implementation of TCP available for attaching to the resolver component,
and the DNS UDP packet size limitation would have been too severe to allow
proper testing using SPKI certificates.

The modified server software was loaded with a zone file containing SPKI
certificates, and run on a machine that was claimed to be authoritative for
the zone in fake name server information given to the resolver. Queries were
then made for both individual RRsets and chains of certificates. Some of the
test results, along with analysis, follow in Section 7.1.
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Chapter 7

Evaluation and Consideration

7.1 Evaluation of the Resolver Implementation

The resolver that I implemented is rather simple, and does little more than
meets the requirements stated in Section 6.1. It has been successfully used
to fetch SPKI certificates from the DNS. The code appears robust when han-
dling typical queries and answers, but error handling has not been completely
implemented yet. Thus error messages or erroneous data returned by a name
server are likely to cause the resolver to fail.

The amount of time spent locating errors in the code was relatively small
compared to the actual writing of the code. I feel that this is largely because
of the design goals taken, which were mentioned in Section 6.2. The number
of flaws — when compared to the amount of code written — was slightly smaller
than I had anticipated, and some of them were immediately revealed as they
triggered a sanity check embedded in the program.

The earlier certificate repository implementation of TeSSA was local. Now
that the DNS resolver is ready for use, the local repository can be replaced
with the DNS to allow for distributed management of information regarding
trust relationships. As mentioned earlier, one goal of TeSSA is to use existing
standards and solutions whenever there are suitable ones. It is therefore
natural to implement the repository within the DNS, as the DNS is a widely
used and standardized distributed database. A certificate repository is an
integral part of the TeSSA architecture, as portrayed in Figure 7.1.

The trust and policy management infrastructure of the TeSSA architecture
has been implemented using SPKI [27]. The current implementation re-
places the default class loader of Java 2 with one that uses SPKI certificates
to determine the permissions of a Java class as it is loaded. Integrating the
resolver with the SPKI component will thus facilitate distributed adminis-
tration of Java 2 permissions. The integration work remains yet to be done.
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Figure 7.1: Telecommunications Software Security Architecture.

The authentication protocols of the TeSSA architecture are based on Internet
Security Association and Key Management Protocol (ISAKMP) [20]. The
ISAKMP protocol component is currently being completed [31]; there is no
intention for it to access the certificate repository directly. Connection se-
curity of TeSSA is to be achieved through the use of the Internet Protocol
Security (IPSEC) protocols, but there are no concrete plans of including
IPSEC in the current architecture implementation.

Certificates can be distributed between local repositories used by the SPKI
component, JAR files containing classes to which the permissions in the cer-
tificates pertain, as well as various DNS domains. The administration tasks
are then divided between maintainers of systems running a JVM, creators of
Java classes, and DNS zone administrators. However, as we have not imple-
mented a name server, and the resolver does not presently support making
dynamic updates, the management cannot yet be done through the use of
our architecture implementation alone. For now, DNS updates have to be
made through other means, several of which were covered in Section 4.7. 1
believe that support for dynamic updates could be added to the resolver with
reasonable effort. Nevertheless, unless there is a pressing need to add such
support, it is best to wait until dynamic updates have been standardized and
are supported by the latest name server implementations.

Performance

In the design and coding of the resolver, no great effort was put into opti-
mizing it for speed. While its performance is adequate for the tasks it has so
far been used, there probably is a lot of room for improvement. The resolver,
along with the underlying protocol stack, takes several seconds to launch.
However, once the initialization process is complete, the resolver usually re-
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turns answers to queries reasonably fast, taking roughly a second per name
server it needs to consult. As no name servers need to be consulted when
the answer is in the cache, caching yields noticeable time savings. Indeed,
caching is important to avoid long delays fetching frequently used certificates.
Avoidance of such delays would be practically essential if wide adoption of
public key infrastructures resulted in certificate queries being as common as
network address queries.

Search Algorithm

The certificate chain search algorithm of the resolver has not yet received
extensive testing, but it nevertheless has already been used to acquire and
construct chains. It seems to be functioning correctly, but I believe that its
performance could be improved considerably. This could be done for example
by implementing the heuristics described in [25]. Another way would be
to have the algorithm examine several possible branches simultaneously by
creating multiple sessions with the resolver. Currently the algorithm spends
most of its time waiting for the resolver to return data. The idle time could
be reduced by making new queries and processing answers to other queries
while waiting for a response to a query.

In order to function correctly, the search algorithm needs to be able to
tell which certificates contain permissions greater than or equal to those
requested by the user of the algorithm. The comparison routine used for the
task is the one implemented for the SPKI component. It is capable of com-
paring sets of Java permissions. Support for other kinds of permissions will
need to be added as required. Online checks possibly specified within SPKI
certificates are currently not performed at all. Support for them will not
be included in the TeSSA architecture implementation before the ISAKMP
component has been completed. This is because ISAKMP will be used for
exchanging certificates and their validation messages [31].

The JaCoB Framework and the Protocol Stack

The JaCoB framework implementation is still a work-in-progress, and does
not even work completely according to its design [31]. Major changes to it
are likely to require changes in the resolver as well.

While the current protocol stack implemented using JaCoB is otherwise well-
suited as a foundation for the resolver, it does have one serious shortcoming.
TCP is not implemented at all. This was a problem as the DNS standard
states that UDP replies of over 512 bytes are truncated, and that the complete
reply should then be acquired through the use of TCP. It was therefore
essential for all replies to fit into UDP packets, but in most cases even a
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single CERT RR containing an SPKI certificate does not fit into a single 512
byte packet. For this reason I was forced to modify some name servers to
have them send replies of any size within UDP packets, without truncating
them. Needless to say, implementing TCP would have been preferable, but
there were no resources to allocate for the task.

7.2 The DNS as a Certificate Repository

As I worked out the details of using the DNS as an SPKI certificate repository,
I noticed no properties of the DNS that would make it unusable for the task
of storing SPKI certificates. Nevertheless, there is one significant problem
that requires effort to work around. This fundamental problem is that the
need for names introduced by the DNS conflicts with the principles of SPKI.
One of the ideas behind SPKI is that the use of unique names other than
public keys is avoided. Resource records, however, do need to be given a
name of a particular form. There often is no natural way to choose such a
name for a certificate. If a global database for storing certificates were to
be designed from scratch, the indexing method should be chosen differently
from that used in the DNS.

The number of certificate entries stored in name servers could be much larger
than the number of entries containing information about hosts. This is be-
cause certificates typically concern people or programs instead of hosts, as
explained in Section 5.2.2. The fact that the DNS was designed primarily
for storing information about hosts gives raise to the question if the DNS
will scale well enough to also accommodate certificate storage. There is little
reason to believe that it would not, as new name servers can be added if
the workload becomes too great and cannot be more evenly divided among
existing servers.

Some limits are set by what individual servers can handle, but these limits
are not, very severe. Servers authoritative for the com zone have thousands
of RRs, and judging from their response times they are clearly capable of
handling that amount of data well enough. Advances in database technol-
ogy, increasing processing power and growing memory sizes should push the
limitations even further. Nevertheless, already for reasons of limitations in
DNS message sizes it is best to minimize the number of certificates stored
in the same domain. Ways to do that were covered in Section 5.2.2. RRs
that need not be stored in the same domain can be stored in separate name
Servers.

While the increase in DNS traffic caused by certificates might not be a prob-
lem for dedicated name servers, there still are the clients to consider. Let
us suppose that there is a multi-user host that, on the average, launches
an application 10000 times a day. Let us further assume that each time an
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application is launched, one certificate that is not stored together with the
application is needed. If no caching is performed, the DNS needs to be ac-
cessed each time. To acquire a certificate at least one UDP packet must be
sent and at least one must be received, which results in at least 20000 UDP
packets of traffic. Suppose that in some cases more than one certificate is
needed, or more than one queries need to be made to acquire a certificate,
and that the above result needs to be multiplied by 10 to get a good estimate.
Still, even 200000 packets worth of extra traffic should be quite a reasonable
amount, at least if the DNS accesses are distributed somewhat evenly during
the day.

Now suppose that the client does do caching; then it could be that certificates
only need to be fetched from the DNS when an application is run for the
first time, to see if it has the permission to run on the machine, or when
a certificate in the cache has expired. Caching should thus make the above
estimates considerably smaller. If a system were to need certificates regularly
and for many different purposes, as a part of its normal operation, caching
might well be essential to keep the DNS traffic on an acceptable level.

It is also worth considering if the increase to the workload of a host that
results from creating, verifying, and managing a large number of certificates
is acceptable. That is beyond the scope of this thesis, however.

While the DNS does appear to be suitable for storing SPKI certificates, there
are cases in which it does not make sense to store certificates in the DNS,
or in any other distributed database for that matter. Privacy and lifetime
issues have already been mentioned. In addition to those, it is also worth
considering the contexts in which a certificate is needed. For instance, if a
certificate is only needed together with a Java class, storing it together with
the class (e.g. in a JAR file) is likely to be the most efficient solution. It may
even be that only the creator of the class knows what permissions an instance
of the class needs to perform its tasks; thus it is natural for the creator to
issue the class a certificate that specifies those permissions, and to include
it with the class when distributing it. As another example, if a certificate is
created by and only needed locally by a verifier, then it often makes sense
for the verifier to keep the certificate to itself if the space allows.

The kind of SPKI certificate whose storage in the DNS is the most beneficial
is a delegation certificate not issued by the verifier. The verifier may not
even know of the existence of such a certificate, and it is thus not natural
to arrange for the verifier to store it. Also, such a certificate does not only
concern its subject, but indirectly also all those entities to whom the subject
has delegated some of the permissions in the certificate. It is thus not natural
to store such a certificate with its subject either. From the DNS it can be
accessed by all the entities that need it.

61



CHAPTER 7. EVALUATION AND CONSIDERATION

7.3 Future Work

The earlier sections already presented evaluation of my resolver implemen-
tation and certificate storage scheme, suggesting improvements when appro-
priate. This section gives suggestions for research and standardization work
that could help improve the efficiency or usability of the solutions presented
in this thesis.

Both the SPKI and the DNS specifications are still evolving. Modifications or
additions to them may necessitate changes in the certificate storage scheme
described in this thesis, and naturally also to any existing implementations.
When considering certificate retrieval from the DNS, it would be particularly
beneficial to have the DNS standard revised to allow the use of larger UDP
replies, as explained in Section 4.3.

At present, public keys are typically longer than 1000 bits. Smaller key sizes
— and thus also certificate sizes — would be useful. This especially applies
when placing certificates in size-restricted environments, such as DNS UDP
messages or smart, cards. Elliptic curve cryptography looks promising, as it
appears to offer drastically shorter key lengths than the public key algorithms
currently in common use, while attaining a similar level of security. Elliptic
curves have been known for a long time, but applying them to cryptography
is something relatively new. More research is required before one can be
reasonably confident in the security of elliptic curve cryptosystems. Even
less research effort has been put into hyperelliptic curve cryptography, which
appears to allow the use of even shorter keys. Both kinds of cryptography
are planned to be utilized in the TeSSA implementation. An elliptic curve
implementation already exists, but it is yet to be integrated to the rest of
the system [17].

Even once implementations of secure distributed computing architectures
that offer good support for managing certificates are available, there is still a
lot of work to be done in designing and developing applications for them. No
matter what the applications are, their implementations should be easy to
use. The importance of usability was addressed in Section 5.2.4. Considering
certificates in general, there are likely to be uses for them that have not been
thought of yet. So far authorization certificates, for instance, have received
little attention.
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Conclusions

Societies are increasingly dependent on fragile information infrastructures.
Yet, it is hard to develop and maintain information security in distributed
settings. In making delegation and access control decisions, it is important to
have up-to-date security-related information. Trust, policy, and authoriza-
tion information can all be represented and managed as certificates, which
allows its integrity and authenticity to be verified. As such information tends
to be dynamic in nature, it is important for its management to be flexible as
well. If not, the result is likely to be either a heavy administrative burden
or weak security. To achieve convenient policy management in a distributed
setting, it seems natural to use a distributed database, and the DNS is a
widely applied distributed database solution.

In this thesis, I have tried to provide a reasonably complete and detailed
coverage of how to store and retrieve SPKI certificates using the DNS. I
started with information from available sources, and proceeded to fill in the
gaps with solutions of my own. The theory got refined and applied to practice
as I implemented a resolver with certificate support and experimented with
it. In addition to the certificate storage theory, I included a description of the
resolver implementation in this thesis, albeit not in a very detailed manner.

The SPKI specification does not define a certificate repository. The current
IETF proposal that concerns the storage of certificates in the DNS mostly
addresses X.509 and PGP; it does not elaborate upon SPKI. Some other lit-
erature on the topic exists, but there still were many previously unaddressed
details to work out in determining exactly how to make efficient use of the
DNS as a certificate repository. Such details include the naming of certifi-
cates in a way that supports efficient retrieval, as well as deciding where to
keep the naming information to make it possible to acquire entire chains of
certificates without knowing all of the domain names in advance. In this
work I also refined an earlier scheme that defines how to choose the DNS
node in which an SPKI certificate should be stored.
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The experiences gathered from the work done on this thesis support the no-
tion that the DNS can be adopted as an SPKI certificate repository. Together
with applications that hide the unnecessary complexity involved in accessing
the DNS, it should be possible to make the DNS practical enough to use as
a repository even for large amounts of frequently changing certificate data.

Telecommunications Software Security Architecture (TeSSA) is an architec-
ture for secure distributed computing. The resolver created within the course
of this work is soon to be integrated with other components, in order to form
a TeSSA implementation. Issues of usability will be studied further within
the TeSSA project. The usability research will not be limited to the certifi-
cate repository, as it is important to make the entire architecture easy to use.
This is because the security and reliability of the architecture implementation
depend not only on the availability of certificates, but also on what autho-
rizations the certificates grant and to whom. Maintaining a security policy
is a challenging task for the administrator. There remains more research to
be done in investigating how to help automate the process of keeping the
certificate data up-to-date and how to visualize the maintained data.
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Appendix A

Terms and Abbreviations

BIND Berkeley Internet Name Domain.
JAR Java Archive.
JVM Java Virtual Machine.

Maximum Transfer Unit The size of the largest piece of data that can
be transferred across a given physical network without fragmentation.

octet Eight bits.
PGP Pretty Good Privacy.

primary name A domain name which is not an alias, i.e. there is no CNAME
record that has the name.

thin client A simple client program or device which relies on the servers
it interacts with to provide most of the functionality required for per-
forming tasks.

X.509 A de facto standard created by ITU (International Telecommunica-
tion Union) that defines data formats and procedures related to the
distribution of public keys via certificates.
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